SIAM J. COMPUT. © 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 1-31, February 1990 001

AN OPTIMAL LINEAR-TIME PARALLEL PARSER FOR
TREE ADJOINING LANGUAGES*

MICHAEL A. PALISt, SUNIL SHENDEY, AND DAVID S. L. WEIY

Abstract. An optimal parallel recognition/parsing algorithm is presented for languages generated by
tree adjoining grammars (TAGs), a grammatical system for natural language. TAGs are strictly more powerful
than context-free grammars (CFGs), e.g., they can generate {a"b"c"|n =0}, which is not context-free.
However, serial parsing of TAGs is also slower, having time complexity O(n®) for inputs of length n (as
opposed to O(n?) for CFGs). The parallel algorithm achieves optimal speedup: it runs in linear time on a
five-dimensional array of n® processors. Moreover, the processors are finite-state; i.e., their function and
size depends only on the underlying grammar and not on the length of the input.

Key words. language recognition and parsing, tree adjoining languages, context-free languages, mesh-
connected processor arrays

AMS(MOS) subject classifications. 68Q80, 68Q35, 68Q45, 68Q50, 68S05

1. Introduction. Language recognition and parsing are important problems that
arise in many applications, e.g., compiler construction, natural language processing,
and syntactic pattern recognition. Much of the work in this area has centered on
context-free languages (CFLs) and its subclasses. Although many subclasses of CFLs
can be parsed in linear time, the fastest known practical parsing algorithms for general
CFLs (Cocke-Younger-Kasami’s and Earley’s algorithm) have time complexity O(n?)
for inputs of length n [AHO72], [HOPC79]. An asymptotically faster algorithm that
runs in O(M (n)) time has been given by Valiant [VALI75], where M (n) is the time
to multiply two nx n Boolean matrices. Currently, the best-known upper bound on
M(n) is O(n**"®) [COPP87]. However, the constant of proportionality in Valiant’s
algorithm is too large for practical applications.

Recent research has sought to decrease the time bound for CFL recognition and
parsing by introducing parallelism. The parallel recognition of CFLs was first con-
sidered by Kosaraju in [KOSA75], where he showed that CFLs can be recognized by
two-dimensional arrays of finite-state machines in linear time. His construction is a
parallelization of the Cocke-Younger-Kasami (CYK) dynamic programming
algorithm for recognizing the strings generated by a context-free grammar in Chomsky
normal form (CNF). Later, Chiang and Fu [CHIA84] extended this result to the
parsing problem (i.e., if the string is in the language, output a parse tree of the string).
Their algorithm that performs both recognition and parsing is a parallel implementation
of Earley’s algorithm (that does not constrain the grammar to be in CNF) and runs
in linear time on a two-dimensional systolic array of O(n?) processors. Unfortunately,
for the parsing phase of the algorithm, the processors are no longer finite-state because
they store and manipulate log n-bit numbers. A fully finite-state linear-time parallel
parser (based on the CYK algorithm) was later given by Chang, Ibarra, and Palis in
[CHANS7].

* Received by the editors June 15, 1987; accepted for publication (in revised form) January 1, 1989.
This research was partially supported by Army Research Office grant, DAA29-84-9-0027, National Science
Foundation grants MSC-8219116-CER, MCS-82-07294, DCR-84-10413, MCS-83-05221, and Defense
Advanced Research Projects Agency grant N00014-85-K-0018.

+ Department of Computer and Information Science, University of Pennsylvania, Philadelphia,
Pennysylvania 19104-6389.

2 M. PALIS, S. SHENDE, AND D. WEI

In 1975, Joshi, Levy, and Takahashi [JOSH75] introduced a grammatical system
called tree adjoining grammar (TAG) that is strictly more powerful (in terms of
generative capacity) than context-free grammars. For example, TAGs can generate
{a"b"c" | n= 0}, which is not context-free. Although initially studied for their mathe-
matical properties, TAGs have recently been rediscovered as a good grammatical
system for natural language [KROCS85]. It was not until recently that it has been shown
that tree adjoining languages (TALs) generated by TAGs are polynomial-time parsable
[VIJA86]. However, the serial parsing algorithm is much more complicated and runs
slower than that for CFLs, having time complexity O(n°®) for inputs of length n
[VIJASG6].

In this paper, we present a parallel recognition and parsing algorithm for TALs.
Our algorithm achieves optimal speedup: it runs in linear time on a five-dimensional
array of n’ processors. Moreover, the processors are finite-state, i.e., their function
and size depend only on the underlying grammar and not on the length of the input
string.

The paper is divided into five sections, in addition to this section. Section 2 briefly
introduces TAGs and presents the serial parsing algorithm given in [VIJA86]. Section
3 discusses the array model. The parallel recognition algorithm is described in § 4, and
its extension to parsing is discussed in § 5. Section 6 ends the paper with some
concluding remarks.

2. Tree adjoining grammars. In this section, we define tree adjoining grammars
and present the sequential recognition algorithm given in [VIJA86]. We also define
what constitutes a parse tree of an input string and describe how it can be recovered
by a simple extension to the recognition algorithm.

2.1. Definition of TAGs. Unlike context-free grammars that are defined in terms
of rewriting rules on symbols over a finite alphabet, TAGs are defined in terms of an
operation called adjunction on labeled trees. Formally , TAG is a 5-tuple G=
(N, X, I, A, S), where

N is a finite set of nonterminal symbols,

2 is a finite set of terminal symbols disjoint from N,

I is a finite set of labeled initial trees,

A is a finite set of labeled auxiliary trees,

S e N is the distinguished start symbol.

Initial and auxiliary trees are called the elementary trees of the grammar. All
internal nodes of elementary trees are labeled with nonterminal symbols. In addition,
every initial tree is labeled at the root by the start symbol S and has leaf nodes labeled
with symbols in U {e} (where € is the empty string). An auxiliary tree has both its
root and exactly one leaf node (called the foot node) labeled with the same nonterminal
symbol. All other leaf nodes are labeled with symbols in = U {e}, at least one of which
has a label strictly in Z.

An operation called adjunction composes trees of the grammar as follows. Let y
be a tree containing some internal node labeled X, and let B8 be an auxiliary tree whose
root is labeled with the same symbol X. (See Fig. 2.1 but ignore the C;’s for the
moment.) Then adjoining B into vy at the node labeled X results in the composite tree
«. Informally, the subtree ¢ of y rooted at the node labeled X is excised, B is inserted
in its place, and ¢ is attached to the unique foot node of B. The resulting tree is a.

In general, the formalism allows the possibility of constrained adjunction at a
node, i.e., we can associate with every node a corresponding subset of auxiliary trees
that can be adjoined at that node. This subset is denoted as the constraint associated

AN OPTIMAL PARALLEL PARSER 3

X €y

F1G. 2.1. The adjunction operation.

with the node; adjunction of an auxiliary tree at the node is allowed only if the node’s
constraint set contains the auxiliary tree. Constraints may be of two types: selective or
obligatory. The former case corresponds to selectively adjoining zero or one of the
auxiliary trees in the constraint set, whereas the latter corresponds to necessarily
adjoining one of the trees from the set. Constraints are represented as tuples of the
form (type, subset) where the type can take values “SA” or “OA” denoting selective
or obligatory adjunction, respectively, from the specified set. In constrained adjunction,
the constraint changes at the node where the adjunction took place, as indicated by
the C;’s in Fig. 2.1. More precisely, this node gets the constraint of the root of the
auxiliary tree that is adjointed at the node.

In the subsequence, we assume that elementary trees of the grammar are assigned
unique tree numbers and that within a tree, nodes have unique positional indices. We
adopt the convention that if I' and A are in the same tree then index (I') < index (A)
if and only if a postorder traversal of the tree visits I" before A. Thus, each node is
represented as a tuple (tree-number, index, label, constraint). Node A is adjoinable at
node O if and only if A is the root node of some auxiliary tree «, label (A) = label (®),
constraint (@) =(type, S), and a € S.

Tree a elementary derives tree B (denoted a - B) if and only if B results from «
by adjoining an auxiliary tree at some node in a. a derives B (denoted a »* 8) if and
only if there is a sequence of zero or more trees starting with @ and ending in 8 such
that every tree in the sequence elementarily derives its successor. 3 is called a derived
tree if and only if @ »* B for some elementary tree a; in particular, if @ is an initial
(auxiliary) tree, then B is called a derived initial (auxiliary) tree. The frontier of a tree
is defined as the left-to-right ordered sequence of leaf nodes of the tree. The yield of
the tree is the corresponding string of labels of the frontier nodes. It can be verified
that every initial tree of a TAG derives trees whose yields are strings of terminal
symbols. Accordingly, the tree adjoining language (TAL) L(G) generated by a TAG G
is defined as follows:

L(G)={we Z*|w is the yield of a derived initial tree that does not
contain any nodes with constraints of type “OA”}.

4 M. PALIS, S. SHENDE, AND D. WEI

For example, consider the TAG G = ({S}, {q, b, ¢}, @, B, S) shown in Fig. 2.2(a).
If the auxiliary tree B is adjoined into the initial tree a at its root node, the derived
tree v, results (see Fig. 2.2(b)). Adjoining B into ¥y, at the node indicated by the arrow
produces a new derived tree vy,. This process can be continued producing larger derived
trees. It can be shown that all such derived trees have yields of the form a‘b’c’. Moreover,
the trees have no nodes with constraints of type “OA.” Thus, L(G)={a"b"c"|n=0}.
Note that L(G) is not context-free.

The sequential algorithm described in the next section makes certain assumptions
about the structure of the tree adjoining grammar; in particular, it is assumed that the
TAG is in normal form. A TAG is in normal form if and only if every internal node
of every elementary tree has exactly two children. The normal form for TAGs is
analogous to the Chomsky Normal Form for context-free grammars. It can be shown
that an arbitrary TAG G, can be converted to an equivalent TAG G, in normal form
in time proportional to O(|G,|), where |G,| =the number of nodes in all elementary
trees of |G,| [VIJA87].

2.2. Sequential recognition of TALs. We now describe the sequential recognition
algorithm for TALs given in [VIJA86]. For a TAG G, define a rule to be a tuple of
the form (conv, node, , node,, node;), where conv € {0, 1, 2, 3}. If conv =0 (called a leaf
rule), then node, is a leaf node of some elementary tree of G, and node, = node; = A.
LEAF (1) denotes the set of leaf rules whose node, is labeled L If conv e {1, 2, 3}, then
node, is an internal node; such rules are formed by applying the following convolution
operations (““— denotes a ““don’t care” value):

<_9 Fa) _) | <_’ A’ —’_> =<1’ ®’ Fs A)

if and only if A is adjoinable at ', and O is identical to I" except that constraint (@) =
constraint (A),

(_9 F9 e _> *2 (_9 As) _> = (2’ ®7 F’ A)

if and only if @ is the parent of I' and A, T is to the left of A, and constraint (I') and
constraint (A) are both type “SA,”

(_F’ e _) *3 <_’ A’) _) = <37 ®’ Fs A)

if and only if @ is the parent of I" and A, T is to the left of A, and constraint (I') and
constraint (A) are both type “SA.”

Note that #, and *; are actually the same operation except that the conv field of
the resulting rule has value two or three, respectively. It is convenient to define these
two convolutions separately as they simplify the parsing process.

The convolutions can be extended to sets S; and S, of rules, ie., S;*;S,=
{R|R =R, *;R,, for some R,€ S, and some R,c S,}. We assume that for any set S,
S *, J=*,; S =(. Finally, for any set of rules S, we define CLOSURE(S) to be the
value returned by the following function:

function CLOSURE(S);
repeat
S,<S;
S=SU[LEAF (¢) %, SJU[S *; LEAF (¢&)];
until S, =S,
return (S);
end CLOSURE;

AN OPTIMAL PARALLEL PARSER

<@ ‘VS> S q
<@ 'V$> S q
<{g}'vs>S

<@ ‘'VS>S

0

{0=u|,2,9,0}=(D)T 244ym ‘D DVL v fo spduivxs uy 77 "Old

HS

<@ ‘VS> S

N

<@ ‘'VS>§ °g <(dyvs>s :o

(q)
3
> <@ ‘VS$> S q
- <+
<{d} ‘'vs>S
\ /\ :
<@ 'VS> S B <{d} .<wv\m]
()
q

6 M. PALIS, S. SHENDE, AND D. WEI

The function CLOSURE is used later to obtain chains of nodes in elementary trees
that have children labeled . The number of such nodes is bounded above by the size
|G| of the grammar; hence, the loop is iterated at most |G| times.

Given a TAG G in normal form and an input string a,a,- - - a,, n=1, the
Vijayashanker-Joshi dynamic programming algorithm [VIJA86] constructs a four-
dimensional recognition matrix A whose elements (or items) are sets of rules. Item
A(i, j, k1), 0= i=j=k=1=n, has the property that (see Fig. 2.3):

(=, 0,—,—)e A(i, j, k, 1) if and only if ® is a node in a derived tree y and the
subtree of y rooted at ® has a yield given by either a;, - - - a;Ya,,, - - - a
(when j<k) or a;,, - - - a; (when j=k).

a1 . a; a5, e a

FIG. 2.3. (-, 0, —, =Ye A(i, j, k).

The recognition matrix is computed as follows. Initially, all items are set to the
null set &. Then, items A(i, i i i+1) and A(i,i+1,i+1,i+1) for 0=i=n—1 are
set to CLOSURE (LEAF (a;,,)), A(,iii) for O0=i=n are set
to CLOSURE (U yc(nuiey LEAF (Y)), and A(j, 4, j,j) for 0=i<j=n are set to
CLOSURE (U ycn LEAF (Y)). The rest of the matrix is computed according to the
following equation.

21 1) AGLkKD= U U [A(m,] k p)* A(, m,p, 1],

i=m=j k=p=l

(2) AZ(iaj, k, I) = U [B(la m) *) A(m9j9 k’ I)]9

i=m=j

(3) AL kD= U [A(,) kp)*s B(p, D],

k=p=l
(4) A(iaja k, l) = CLOSURE (Al(i,j, ks I) U AZ(i9j9 ks l) U A3(i,j9 k, l))

where B(0:n,0:n) is an auxiliary matrix such that B(q, s)=U ,=.=, A(q, 1, 1, 5).

Note that in (2.1), the occurrence of A(i, j, k, I) in the right-hand side of some
equation (e.g., A(m, j, k, p) with m =i and p =1), respresents the initial value . We
refer to pairs of items occurring in the right-hand side of any of the equations (e.g.,
[A(m,j, k, p), A(i, m, p, 1)]) as the convolving pairs of A(i,j, k, I).

AN OPTIMAL PARALLEL PARSER 7

Sequentially, (2.1) is computed as follows:

for /=0 to n do
for i =1/ downto 0 do [*SPAN =1[—i¥|
for j=ito | do |*LEFTSPAN =j — i*|
for k=1 downto j do |*RIGHTSPAN = I — k*|
compute steps (1)-(4) of (2.1).

The input string a,a, - - - a, € L(G) if and only if there exists a rule (—,®, —, —) in
B(0: n) such that @ is the root node of some initial tree of G, and constraint (®) is
not of type “OA.”

The annotated variables SPAN, LEFTSPAN, and RIGHTSPAN are shown in
Fig. 2.4. The main point to note is that for a fixed SPAN, we progressively decrease
the gap = (SPAN —[LEFTSPAN + RIGHTSPAN]) dominated by the foot node until
it becomes 0, and the nodes under consideration dominate subtrees with terminal
yields. One can also verify that items having the same /, SPAN, and gap do not depend
on each other and hence can be computed in any order.

2.3. Sequential parsing of TALs. We now describe a parse (derivation) tree of a
string in the tree adjoining language. Suppose that (—, @, —, —) is the rule obtained in
B(0, n) at the end of the recognition algorithm; i.e., ® is the root node of some initial
tree @ of the grammar. Let B,, - - -, B¢ be auxiliary trees with root nodes A, - - -, Ag,
respectively. Consider the following derivation of a certain string from a:

(1) Ay, - -+, A; are adjoined at nodes Iy, - - -, I's, respectively, in a.

(2) A, is adjoined at node I', in B,.

(3) As, Ag are adjoined at nodes I's, I, respectively, in B;.

Then, given that index (I',) < index (I',) < index (I';) in @, and index (I's) < index (I')
in B5, we can pictorially describe the derivation as a tree of rules resulting from the
adjunctions (see Fig. 2.5).

4 9 Gy

«-' LEFTSPAN l" -{ RIGHTSPAN ls—
- SPAN I'—

FIG. 2.4. Dynamic programming parameters for A(i, j, k, I).

Informally, the root of the parse tree is labeled with the rule (—, ®, —, —) represent-
ing the root node of initial tree «. The children of the root correspond, in left-to-right
order, to the adjunctions performed on the initial tree in order of increasing indices
of the nodes where the adjunctions take place. For the children of other parse tree

8 M. PALIS, S. SHENDE, AND D. WEI

<—0,-,->

/

<1,0,T,A > <1,0,T,A,> <1,05 T3 A3>

| _—

<1,0, T, A> <1,85Ts, As> <1,8Tg, 86>
FIG. 2.5. Parse tree of a TAG derivation.

nodes, the left-to-right order has the same connotation except that adjunctions are
now performed on the nodes of the auxiliary tree, whose root is represented by the
fourth field (i.e., the A;’s) of the rule. A postorder traversal of this parse tree results
in a sequence of adjunction rules that we shall call the bottom-up inside-out parse (or
simply parse) of the input string. For the given example, the parse corresponds to
(1,04,T4,A,X1,0,,T, AiX1, 05,15, AX1, O5, T's, AsX(1, B, I, Ag)
(1’ ®3, F3, A3>(—’ ®’) —)'

Note that the structure of the derived initial tree that yields the input string can be
fully recovered from the parse described above.

If the input string is valid (i.e., in L(G)), a parse of the string can be recovered
by searching back through the recognition matrix A and “marking” rules representing
adjunctions (i.e., conv =1). The details are given in procedure SEARCH-FOR-PARSE
below (function REDUCE “unravels” the closure of the A(j, j, k, I) computed in step
(4) of (2.1)).

Note that only adjunctions (conv=1) are included in PARSE. That this list
corresponds to a bottom-up inside-out parse is justified by the following proposition.

ProrosITION 2.1. Let PARSE contain the sequence I,, I,, - - -, I, at the end of the
algorithm. For any I,= (i,,j,, k,, 1,,{—, ®,,—,=)) in this sequence, let SPAN, and
FRONTIER, denote the values of (I,—i,) and [(j,—i,)+(l,—k,)], respectively. Then
for every pair, I, and I,, 1=p<q=m, in the sequence, either one of the following
statements hold :

1) <, or

(2) I,=1,, SPAN, = SPAN, and FRONTIER, < FRONTIER,.

The proposition is proved quite easily by induction on the length of the parse
sequence and from the fact that every adjunction creates trees with longer yields (i.e.,
there are at most n adjunction rules in PARSE). This proposition will be used later
in the description of the parallel parsing algorithm. Note that if the indices i, j, k, and
I were left out of the items of the parse sequence, then we would obtain the bottom-up
inside-out representation described earlier.
function REDUCE (i, j, k, I, {(conv,, ®,, T, A}));
if (conv,; =0, 1) then return ((conv,,®,,T', A,));

{conv,®, T, A)=(conv,,0,,T";, A});
done = false;
repeat
if I is in LEAF (&) then
find a rule R=(—, A, —, —) in A(i,j, k, 1)
else
if A is in LEAF (&) then
find a rule R=(—,I', —, —) in A(j, j, k, 1)
else done = true;
if not (done) then

AN OPTIMAL PARALLEL PARSER 9

(conv,®,T A)=R:
until done;
return ((conv, ©,T, A));
end REDUCE;

procedure SEARCH-FOR-PARSE (i, j, k, I, {conv,, ®,,T'{, A,));
(conv, 0, T, A= REDUCE (i, j, k, I, {conv,, ®,,T'{, A,));

case
conv = 0: return;
conv=1:

fori=m=jand k=p=Ildo
if (—,T',—,—)isin A(m,j, k,p) and (—, A, —, —) is in A(i, m, p,) then
SEARCH-FOR-PARSE (m, j, k,p,{(—,T,—,-));
SEARCH-FOR-PARSE (i, m,p,1,{—, A, —, —));
append (4, j, k, I, (conv, ®, T, A)) to the end of PARSE;
return;
endif;
conv =2:
for k=p=land p=m=ldo
if(—,T,—, —)isin A(j, j, k, p) and (—, A, —, —)isin A(p, m, m, l) € B(p, I) then
SEARCH-FOR-PARSE (i, j, k,p,{(—,T,—, -));
SEARCH-FOR-PARSE (p, m, m,,{—, A, —, —));
endif; return;
conv = 3:
fori=m=jand i=p=m do
if(—,T,—, —)isin A(i, p, p, m) € B(i, m) and(—, A, —, —)isin A(m, j, k, I) then
SEARCH-FOR-PARSE (i, p,p, m,{—,T,—, -));
SEARCH-FOR-PARSE (m,j, k,1,(—, A, —, —));
return;
endif;
endcase;
end SEARCH-FOR-PARSE,;
[*MAIN*|
initialize a global variable PARSE to the empty sequence (list);
let (conv, ®, —, —) be the rule in B(0, n) found in the last step of the recognition
algorithm,;
find an item A(0, j, j, n) € B(0, n) containing (conv, @, —, —);
call SEARCH-FOR-PARSE (0, j, j, n,(conv, ®, —, —));

3. The processor array model. The parallel machine model is a five-dimensional
array of processors numbered P(0,0, 0,0, 0) through P(n, n, n, n, n) (where n is the
length of the input). Processor P(a, b, ¢, d,) is directly connected to other processors
via a set of unidirectional links L={[Aa, Ab, Ac, Ad, Ae]|Aa, - - - ,Aec{—1,0,1}}. Link
[Aa, Ab, Ac, Ad, Ae] connects P(a, b, c,d, e)to P(a+Aa, b+Ab, c+Ac,d+Ad, e+ Ae);
data through this link can only flow from the former processor to the latter. Moreover,
the delay along the link is d = (|Aa|+|Ab|+|Ac|+|Ad|+|Ae|). That is, a data item sent
out of the former processor at time ¢ arrives at the latter processor at time (¢+d). The
assumption that all links in the set L are available to each processor is only made to
simplify the presentation of the parallel algorithm. At the expense of additional control
logic, L can be reduced to the set of nearest-neighbor links {[*1,0,0,0, 0],
[0, +1,0,0,0], [0,0,+1, 0, 0], [0,0,0, +1, 0], [0,0,0,0, +17]}.

10 M. PALIS, S. SHENDE, AND D. WEI

We assume that the processors operate at discrete time steps by means of a global
clock. The input to the array is a string of the form ¢a,a, - - - a,$, where a,a, - - - a,
represents the string to be parsed. It is fed serially to processor P(0, 0, 0, 0, 0) beginning
at time 0; i.e., ¢ is received at time 0, a; at time i, and $ at time (n+1).

The parallel algorithm is divided into two distinct phases: recognition and parse
recovery. These phases have the property that in the former, data flows only toward
higher-numbered processors, while in the latter, data flows only toward lower-numbered
processors. For this reason, it is convenient to describe the computation of the array
in terms of forward and reverse sweeps that we now define.

Let d(a,b,c,d e)=(a+b+c+d+e) denote the distance of processor
P(a, b, c, d, e) from processor P(0,0,0,0,0). Then, P(a, b, c, d, e) is said to be at
forward sweep s with base-time t, if and only if the processor is currently at timestep
(s+tot+de(a, b, c d,e)). Intuitively, the base-time is the timestep at which processor
P(0,0,0,0,0) “signals” the start of a sequence of computation steps C,, C,, etc., that
are to be performed by all processors of the array. Computation step C; is performed
by every processor at forward sweep s. However, forward sweep s represents different
time steps for different processors, as it is defined in terms of the processor’s distance
from P(0, 0,0, 0, 0). In particular, if ¢, is the timestep corresponding to forward sweep
s of processor P,, then for a higher-numbered adjacent processor P,, forward sweep
s corresponds to timestep ¢, =t,+d, where d is the delay along the link connecting
the two processors. Thus, the result of computation step C; in P, can affect computation
step C, in P,, since the result in the former can be sent to the latter just in time to
take part in the latter’s computation. Fig. 3.1 illustrates forward sweep s with base-time
0 for the subarray of processors {P(a, b, c, d, ¢)|0=d, e = b}. Observe that a forward
sweep is not a “snapshot” of the subarray at a specific timestep since processors are
viewed at different times. Moreover, for each processor the next forward sweep (s +1)
corresponds to the next timestep.

One advantage of the sweep notion is that certain computations on the array can
be described as occurring during one particular forward sweep, as opposed to occurring
over a sequence of several time steps. As an example, in Fig. 3.1, suppose that at the
start of some forward sweep s, every processor P(a, b, c, d, ¢) holds an item v(d, e).

P(.»b»cvooo) P(a,b,c,O,b)
t=a+b+c+s
t+1

P(a,b,c,b,0) P(a,b,c,b,b)

t+b t+2b-1 t+2b
F1G. 3.1. Forward sweep s with base-time 0 for {P(a, b, c, d, ¢)|0=d, e = b}.

AN OPTIMAL PARALLEL PARSER 11

Then, during the same forward sweep, the union v(d) of all items v(d, e) in row d
can be computed at processor P(a, b, ¢, d, b) by sending the items along the horizontal
direction. Each processor receives a value from its left-neighboring processor (if it
exists), takes the union of this value and the item it holds, and sends the result to the
right. The values will be ready at the rightmost processors also at forward sweep s.
The operation can be extended to higher dimensions. For example, each processor in
Fig. 3.1 can instead receive values from the processors above it and to its left, take
the union of these values and the item it holds, and send the result downward and to
the right. The union v of all items in the subarray will thus be ready at P(a, b, c, b, b)
also at forward sweep s. Because this operation will be used quite frequently in the
subsequent sections, we shall refer to it as the union operation.

Analogously, a reverse sweep can be defined as follows. Let d,.(a, b, c, d, e)=
5n—(a+ b+ c+d+e) be the distance of processor P(a, b, ¢, d, e) from P(n, n, n, n, n).
Then, P(a, b, c, d, e) is said to be at reverse sweep s with base-time t, if and only if the
processor is currently at timestep (s+t,+d,(a, b, ¢, d, e)). In other words, a reverse
sweep is similar to a forward sweep except that it is initiated from P(n, n, n, n, n).
Moreover, lower-numbered processors are viewed at later timesteps than higher-
numbered processors.

We end this section with a description of the organization of a processor in the
array. Each processor P(a, b, c, d, e) is divided into two processing elements (PEs)
denoted Py(a, b, ¢, d, e) and P,(a, b, ¢, d, e). Each PE has its own small local memory
and operates independently of the other. The local memory of each PE consists of a
number of data and accumulator registers as shown in Fig. 3.2. The data registers come
in pairs and are partitioned into three register banks labeled R1, R2, and R3. The
register-pairs within each bank are named as shown in the figure. The left (right)
register of a register-pair is referred to by appending the suffix ““.left” (““.right”’) to the
register-pair name, e.g., R1[0, 0].left refers to the left register of register-pair R1[0, 0].
In addition, there are two accumulator registers named A and B. A few temporary
registers are also assumed to be available. The functions of the registers are described
in the next section.

R1[0,0} R1[0,1] R2[0) R3[0]
1]]

R1[1,0]) R1(1,1] R2(1) R3(1]

10 || OO
—

&

H

]

Fi1G. 3.2. Local memory of a PE.

12 M. PALIS, S. SHENDE, AND D. WEI

A processor P(a, b, ¢, d, e) is called primary if and only if b = d = e. PEs of primary
processors are called primary PEs. Primary processors are distinguished in that items
of the recognition matrix are computed only in these processors (one in each PE).
Note that there are only O(n?) primary processors.

4. The recognition phase. The recognition phase computes the items of the recogni-
tion matrix A and determines whether the input is a valid string of the tree-adjoining
grammar. It consists of (n+2) consecutive forward sweeps 0 through (n+1), each
with base-time t,=0. With respect to P(0,0, 0,0, 0), these correspond to timesteps 0
to (n+1) during which it reads the input string. The recognition matrix is constructed
incrementally; that is, for each new forward sweep only a small new portion of the
matrix is computed. Moreover, the computed items are ultimately stored only at the
primary processors. As there are only O(n*) primary processors and O(n*) items to
be computed, every primary processor is assigned O(n) items. The primary processor
computes these items at different forward sweeps. Thus, each item is actually mapped
onto a specific processor and a specific forward sweep. This processor-sweep mapping
is described in the next section.

4.1. The processor-sweep mapping. Items A(j, j, k, 1), 0=i=j=k=I1=n, of the
recognition matrix are mapped onto processors and sweeps as stated in the following
theorem.

THEOREM 4.1. A(i,j, k, 1) is computed and stored in register A of primary PE
P.(a, b, c, b, b) at forward sweep s, where

s=1, a=(-i), b=(—-i)+({-k),

C(L=k),01 if G—i)=(1-k),
[c”‘]‘{[u—i),l] if G—i)= (1- k).

We refer P,(a, b, c, b, b) as the target primary-PE (or simply target) of A(i, j, k, I).
Every A(i, j, k, 1) has exactly one target, except when (j—i)=(I/—k) in which case it
has as targets both P.(q, b, ¢, b, b), x € {0, 1}. It is easy to verify that in the latter case,
2¢=b. Several items may have the same target; however, they are computed by the
target at different forward sweeps. For example, A(0,1,1,3), A(1,2,2,4), and
A(2, 3, 3,5) have the same target Py(3, 3, 2, 3, 3), but are computed at forward sweeps
3, 4, and 5, respectively.

Theorem 4.1 implies that at forward sweeps s, only PEs P.(a, b, ¢, b, b) for which
0=b=a=sand [b/2]=c= b areactive (i.e., compute items). Moreover, they compute
only items A(4, j, k, I) for which I =s. Figure 4.1 illustrates the active primary PEs and
the items they compute for forward sweeps 0 through 4.

Items B(q, s), 0= q =5 = n, of the auxiliary matrix are also mapped onto PEs and
sweeps as stated below.

THEOREM 4.2. B(q, s) is computed and stored in register B of primary PEs
P.(a, a,a,a,a), xe{0, 1}, at forward sweep s, where a= (s —q).

B(q, s) is easy to compute. To see this, suppose inductively that Theorem 4.1
holds for items in the set [A(q, r, 7, s)|q=r=s}. Thus, their values are available at
forward sweep s in the contiguous block of primary processors {P(a, a,c,a,a)|a=
(s—q) and [a/2]=c=a}. By performing a union operation over these values at
forward sweep s, their union B(q, s) can be computed and stored in both PEs of
processor P(a, a, a, a, a) during the same sweep.

Computing the A(i,j, k, I)’s is also simple. Suppose that P.(a, b, ¢, b, b) is the
target of item A(, j, k, I). In order to compute this item, the algorithm makes sure that

AN OPTIMAL PARALLEL PARSER 13

s=0
A(0,00,0)
A(0,0,0,0)
s=1
A(LLL1)
ALLLY
A00,1,1) A(0,00,1)
A@0,0,1,1) A(0,1,1,1)
§=2
A2,222)
AQ222)
AL,122) A(LLLY)
A1,122) A1222)
A0,022) A(00,1,2) A(0,1,1,2) | A(0,002)
A(0,022) A0,122) A(0,1,1,2) | A02,2,2)
8=3
AB333)
A(3,33,3)
A@2,233) A2223)
A2,2,33) A(2,333)
A(1,1,3,3) A1,1.2,3) A(122,3) | ALLL3)
A(1,1,3,3) A12323) A(1,22,3) | A(L333)
A0,03,3) A(00.23) A@0,1,23) | A00,1,3) A(,1,1,3) | A0,00,3)
A0,03,3) A0,1,3,3) A0,12,3) | A(0.23,3) A(02,23) | A(03,33)
s=4
A4,44.4)
a0
A4,44,9)
-t AB34,4) A(333,4)
AG34.4) A(34,4,4)
- A(2,2,44) A(22,34) AQ2334) | AR224)
AQR,24,4) AQ2344) AQ334) | ARAA4Y)
-3 A1,1,4,4) A1,13,4) A123,4) | AL12,4) A(1,2,2,4) | AL,1,1,4)
AL,144) A1,2,44) A(123,4) | A1,344) A(1,3,34) | A1,4,4,4)
-t A0,0,4,4) A0,0,3,4) A(0,1,3,4) | A002,4) A(0,1,24) | A(0,0,1,4) A(022,4) | A(0,1,1,4) | A(0,00,4)
A(0,044) A(0,1,4.4) A(0,1,3,4) | A024,4) A(02,34) | A(0,3,44) A(02,24) | A(0,3,3,4) | A(0,4,4,4)
c=0 c=l =0 c=l =2 =0 c=1 c=2 c=3 c=0 c=1 =2 ¢=3 c=4

€ b0 —;lq——- bat —h‘(— b2 :'I‘ﬁ b3 ;{‘f bed :‘|

FIG. 4.1. Items computed by primary processors for forward sweeps 0 to 4.

at forward sweep s =1, all convolving pairs of A(j, j, k,) are already available in the
subarray of PEs P.(a, b, c, *,*)={P,(a, b, c, d, e)|d, e=b}. During the same sweep,
the required convolution operations are performed by each PE on its local convolving
pairs, then the union of the partial results is obtained (via a union operation) and
stored in primary PE Pc(a,b,c,b,b). The resulting value is S=
Ai(ij, k, DU A,Q, j, k, 1)U Az(3, j, k, 1) (see equation (2.1)). A(G, j, k, I) is then simply
CLOSURE(S).

The tricky part is how to “distribute” the convolving pairs of A(j, j, k, I) among
the PEs of subarray P.(a, b, ¢, *, *). We first give an informal description. The convolv-
ing pairs of A(j, j, k, I) can be naturally subdivided into the convolving pairs of its
partial items A,(i, j, k, 1), 1=r=3.

14 M. PALIS, S. SHENDE, AND D. WEI

First consider A,(i, j, k, 1) = U <n=j Ur=p=1 A(m, j, k, p) ¥, A(i, m, p, I). Construct
a matrix Q(i:j,k:l), such that Q(m,p) contains the pair of items
[A(m, j, k, p), A(i, m, p, 1)]. Now “fold” Q along the center row (or between the two
center rows if the number of rows is even). Fold Q once more, this time along the
center column. Figure 4.2 gives an illustration for the case A(i, j, k, 1) = A(1,4,5,7).
The folding results in a [(j—1i)/2]+ [(I—k)/2] matrix Q’, as shown in Fig. 4.2. Now,
index the rows and columns of Q' from 0, 1, 2, etc. Then the elements of this matrix
are mapped onto the PEs of subarray P.(a, b, ¢, *, *) such that every pair in Q'(v, w)
appears in PE P.(a, b, ¢, b — v, b—w). For example, since the primary PE of A(1,4,5,7)
is Py(6, 5, 3, 5, 5), (then the convolving pairs in Q'(1, 0) would appear in P,(6, 5, 3, 4, 5).

There is a natural correspondence between the convolving pairs mapped onto a
specific PE and the register-pairs R1[y, z] of this PE. Each convolving pair can be
identified with the “quadrant” yz, y, z € {0, 1}, it belonged to in the original unfolded
matrix Q, where the quadrants are those induced by the lines where the folding
took place (see Fig. 4.2). For example, pairs [A(2,4,5,5),A(1,2,5,7)],
[A(2,4,5,7),A(1,2,7,7)], [A(3,4,5,5), A(1, 3,5,7)], and [A(3,4,5,7), A(1,3,7,7)]

quadrant 00 quadrant 01

]
|

[A(1,455).A0,157)] | [A(1,456).A01,16,7)] | [A(1,4,57).AQ0,1,7,7)]
'

[AQ4.55),A0257)] | [AQR4,56),A(1267)] | [AR4,57).A(1.2,7,7)]

]
——— : —_— Matrix Q
'
[A(3.4,55),A013,57)] | [A3,4,56),A(13,67)] | [AB34,57).A(13,7,7)]
1
]
]
]
[A@44,55.A0457] | [A@44,56)A01,467)] | [A@4457),A04,7.7)
'
1
quadrant 10 quadrant 11
0'(0,0) 2'(0.1)
[A(1,4,5,5,A(1,1,57] [A(1,45D,A(1,1,7,1] | [A(145.6),A(1,1,67] [A(1,4,56),A(1,1,67)]
[A(4,4,5,5),A(1,4,5D] [A@G45D,A(1471N] | [A@4456),A(1,467] [A4.4,56).A(1,467)]
Matrix Q’

[A24,55),A01257] [AQ4S5NA(12TN] | [AQ2456,A01,2,6D) [A24.56),A(1,2,67)]
[AG4.55),A(1357)] [ABGASNDAL3TN] | [AGA4S56),A(13,67] [AB34,56),A(1,3,67]

Q' (1,0) oLy

F1G. 4.2. Mapping the convolving pairs of A\(i,j, k, 1) = A,(1,4,5,7).

AN OPTIMAL PARALLEL PARSER 15

of Q'(1,0) are in quadrants 00, 01, 10, and 11, respectively. (By convention, if a pair
lies on the boundary of two or more quadrants, it is assumed to be in all such quadrants;
e.g., [A(1,4,5,6),A(1,1,6,7)] is in quadrants 00 and 01.) The rule for mapping
convolving pairs onto register-pairs is as follows: a pair in quadrant yz is mapped
onto register-pair R1[y, z] (with obvious interpretation that the left and right terms of
the convolving pair goes into the left and right registers, respectively, of the register-
pair). For example, in Fig. 4.2, the convolving pairs in Q'(1, 0) are mapped onto PE
P,(6,5,3,4,5) such that [A(2,4, 5, 5), A(1, 2, 5,7)] is stored in register-pair R1[0, 0],
[A(2,4,5,7), A(1,2,7,7)] in register-pair R1[0, 1], etc.

The mapping for the convolving pairs of partial item A,(i,j, k I)=
Uizms=; B(i, m) *, A(m, j, k, I) is illustrated in Fig. 4.3. A linear array R(i:j) is con-
structed such that R(m) contains the pair [B(i, m), A(m, j, k, I)], which is then folded
along the center column to yield a new array R'. If the rows of R’ are indexed 0, 1,
2, etc., then pairs occurring in R'(v) are mapped onto PE P,(a, b, ¢, b — v, b) such that
the pair coming from half y € {0, 1} of R is assigned to register-pair R2[y] of this PE.

half 0 half 1

[A(1,455)BGN] | [A1456B6EN] | A0457)BI,N] | Array R
]

]
[}
|l
]

>

R’ (0) R'(1)

[A(1,4,5,5),B(5,7)] [A(1,4,57),B(7,7)] | [A(1456),B(6,D] [A(1,4,5,6),B(6,7)] Array R’

F1G. 4.3. Mapping the convolving pairs of A,(i, j, k, 1) = A,(1,4,5,7).

The mapping for the convolving pairs of the third partial item As;(i,j, k, I) =
Uk=p=1 A(i, j, k, p) #5 B(p,) is similar (see Fig. 4.4). The linear array S(p:[) such that
S(p) contains [A(i, j, k, p), B(p, I)] is folded to yield a new array S’. Then, convolving
pairs occurring in S’(w) are mapped onto PE P,(a, b, ¢, b, b — w), with the pair coming
from half z € {0, 1} of S assigned to register-pair R3[z] of the PE.

The mapping described above is formalized in the following lemma.

LEMMA 4.1. At forward sweep s, the convolving pairs of A(i, j, k, I) are stored in
subarray P.(a, b, c,*,™) such that

(1) [A(m, j, k, p), A(i, m, p,)] is in register-pair R1[y, z] of PE P,(a, b, ¢, d, e),

(2) [B(i, m), A(m,j, k, 1)] is in register-pair R2[y] of PE P.(a, b, c, d, b),

(3) [A(, j, k, p), B(p,)] is in register-pair R3[z] of PE P.(a, b, ¢, d, e),
where

s=1L a=(-i), b=((—-i)+(I—-k),

[Cx]:{[(l—k),O] if G—i)=(—k),
’ [G-D,11 if(j-D=(-k),

16 M. PALIS, S. SHENDE, AND D. WEI

half 0 ! half 1

B(L1A(1457)] | [B(1.2)A2457] | [B(13),AG3457] | [B(14),A(44,57] Array §

>

§'(0) §°(1)

[B(1,1),A(1,4,5,7)] [B(1,4),A(4,45,7)] | [B(1.2),A(2,4,5,7)] [B(1,3),A(3,4,5,7)] Array §

FIG. 4.4. Mapping the convolving pairs of A;(i, j, k, [)= A5(1,4,5,7).

[d]={[(j_m)+(l”k),0] if0=2m=(i+j),
P -+ U-H0,11 if2z2m=(i+)),

_{[(j—i)+(l—p), 0] ifo=2p=(k+l),
e, z]= [G—-i)+(p—k),1] if21=2p=(k+]).

Observe that because of the folding, some data registers of a PE may store the
same item. It can be shown that this happens only for certain ‘“special” PEs. In
particular, we have the following fact.

Fact 4.1. Let P.(a, b, c,d, ¢) be a PE. Then at any forward sweep,

(1) If (x=0 and 2d=b+c) or (x=1 and 2d =2b—c¢), R1[0, z].t=R1[1, z].t
and R2[0].t= R2[1].t, where t € {left, right};

(2) If (x=0and 2e=2b—c)or(x=1and 2e=b+c), R1[y,0].t=R1[y, 1].t and
R3[0].t = R3[1].t, where t € {left, right};

(3) If 2c¢ = b, every data register r of P.(a, b, ¢, d,) has the same contents as data
register r of Pi(a, b, c, d, e).

Thus, within each PE, the data registers form equivalence classes depending on
the PE’s indices. Moreover, if 2¢ = b, every data register of the PE is equivalent to the
corresponding data register of the other PE sharing the same indices. (Note that a PE
may satisfy more than one of the relations listed above.) For a data register r of PE
P, we denote by eq(P, r) (or simply eq(r) if P is understood) the set of data registers
equivalent to r.

4.2. The routing scheme. We now describe how items are routed through the
processor array such that the data registers of each PE are properly updated according
to Lemma 4.1.

The routing scheme is embodied in the routing table shown in Table 4.1. A copy
of Table 4.1 is stored in every processor of the array. Each data register has an associated
set of links that defines the directions along which items stored in this register are
received and forwarded. Each link [Aa, Ab, Ac, Ad, Ae] represents both an input link
[—Aa, —Ab, —Ac, —Ad, —Ae] from which the item is received, and an output link
[+Aa, +Ab, +Ac, +Ad, +Ae] through which the item is forwarded. Observe that the
flow of data is only from lower-numbered to higher-numbered processors. This is a
consequence of the “folding” technique used in Lemma 4.1.

AN OPTIMAL PARALLEL PARSER 17

TABLE 4.1
The routing table.

PE, PE,
Register Links Links
R1[0,0] - left [1,1,1,1,1]" [1,1,0,1,1]"
[1,1,0,0,1] [1,1,1,0,1]
R1[0,1] - left [1,1,1,1,0]" [1,1,0,1,0]"
[1’ 1’0’0’ 1] [1 1’ 1’0’ 1]
R1[1,0] - left [1,1,1,1,11* [1,1,0,1,1]*
[1,1,0,1,1] [1,1,1,1,1]
R1[1,1] - left [1,1,1,1,0]" [1,1,0,1,0]"
[1,1,0,1,1] [1,1,1,1,1]
R1[0, 0] - right [0,1,1,1,0] [0,1,0,1,0]
[0,1,0,1,1] [0,1,1,1,1]
R1[0,1] - right [0,1,1,1,1] [0,1,0,1,1]
[0,1,0,1,1] [0,1,1,1,1]
R1[1,0] - right [0,1,1,1,0] [0,1,0,1,0]
[0,1,0,0,1] [0,1,1,0,1]
R1[1,1] - right [0,1,1,1,1] [0,1,0,1,1]
[0,1,0,0,1] [0,1,1,0,1]
R2[0] - left [,1,1,1,11* [1,1,0,1,1]"
[1,0,0,0,0]" [1,0,0,0,0]*
[0,1,0,1,1] [0,1,1,1,1]
R2[1] - left [,1,1,1,11* [1,1,0,1,1]"
[1,0,0,0,0]" [1,0,0,0,0]*
[0,1,0,0,1] [0,1,1,0,1]
R2[0] - right [1,1,0,0,1] [1,1,1,0,1]
R2[1] - right [1,1,0,1,1] [,1,1,1,1]
R3[0] - left [1,1,1,1,1]* [1,1,0,1,1T"
R3[1] - left [1,1,1,1,0]* [1,1,0,1,0]"
R3[0] - right [1,1,0,1,1] [1,1,1,1,1]
[1,0,0,0,0] [1,0,0,0,0]
[0’ 1’1’ 1’0] [0’ 1’0’ 1’0]
R3[1] - right [1,1,0,1,1] [1,1,1,1,1]
[1,0,0,0,0] [1,0,0,0,0]
[0,1,1,1,1] [0,1,0,1,1]

Each item is routed as a tuple of the form (v, r, x), where v is the value of the
item, r is the name of the register from which it originates, and x (=0 to 1) indicates
the PE within the processor where register r is located. Procedures UPDATE-
REGISTERS and ROUTE-REGISTERS below describe how the updating and routing
of data registers are carried out.

UPDATE-REGISTERS. To update a data register, say R1[0,0].left of PE
Py(a, b, c, d, e), the PE first checks whether from any of input links [-1, —1, —1, —1, —1]
and [-1,-1,0,0,—1] associated with this register, there is a tuple of the form
(v, R1[0, 0].left, 0). If such a tuple exists, the PE puts the value v in all registers in the
same equivalence class as register R1[0, 0].left. A PE may receive more than one tuple
targeted for the same register; however, the values associated with the tuples will
always be the same.

ROUTE-REGISTERS. To route the value v stored in a data register, again say
R1[0, 0].left of Py(a,b,c, d, e), the PE first creates the tuple (v, R1[0, 0].left, 0), then
sends it out via the associated output links [+1, +1,+1,+1,+1] and [+1, +1,0, 0, +1].

18 M. PALIS, S. SHENDE, AND D. WEI

If in the routing table, an output link is labeled “+”, the PE ‘“‘waits” one clock cycle
before sending out the tuple, e.g., by first storing it into a temporary register. (Intuitively,
tuples sent out via links labeled by “+” reach the destination PE one forward sweep
later.)

The routing table guarantees that items reach the right data registers at the right
times, as specified by Lemma 4.1. The interested reader is referred to the Appendix
for the derivation of the routing table.

For the routing scheme described above to work properly, procedures UPDATE-
REGISTERS and ROUTE-REGISTERS should only be executed by active PEs (i.e.,
PEs that store items as specified by Lemma 4.1). The following fact is easy to verify.

Fact4.2. PE P.(a, b, ¢, d, e) is active at forward sweep s if and only if the following
conditions hold:

(1) b=sa=ss;

(2) b=2c=2b;

(3) If x=0then b+c=2d =2b and 2b—c=2e=2b;

(4) If x=1then2b—c=2d=2b and b+ c=2e=2b.

Inactive PEs do not participate in any computation or routing of items. The routing
table may in fact forward items from active to inactive PEs (we found this necessary
to make the routing table uniform for all processors). However, by definition, inactive
PEs receiving items simply discard them.

4.3. The algorithm. Procedure RECOGNIZE below specifies the steps performed
by every active PE at each forward sweep. Each call to the procedure represents one
clock cycle.

procedure RECOGNIZE (P,(a, b, ¢, d, e)).
if (active) then
case
|*Compute boundary items.*|
P.(0,0,0,0,0):receive input symbol “a” and send it to P,(1,1,1,1,1) with

a sweep delay; A< CLOSURE (U LEAF (Y));

Ye(NU{e})

Px(a,0,0,0,0),a>0:A<—CLOSURE(U LEAF(Y));

YeN

P.(1,1,1,1, 1):receive input symbol “a” from P,(0, 0, 0,0, 0),
A< CLOSURE (LEAF (a));

otherwise:
[*Compute other items.
UPDATE-REGISTERS:
[*Compute partial results and perform union operation.™|
|*Ar, 1 =r=3, are temporaries.*|

¥l

Al<« U R1[y, z].left *, R1[y, z].right;

»,z€{0,1}

A2« U R2[y].left #, R2[y].right,

ve{0,1}

A3« U R3[z].left *; R3[z].right,

ze{0,1}

AN OPTIMAL PARALLEL PARSER 19

A< U ArU[A of P(a,b,c,d—1,e)]JU[A of P(a,b,c,d e—1)];
1=r=3
if a primary PE then A< CLOSURE (A),
endcase;
if not a primary PE then
send A to P.(a,b,c,d+1,¢e) and P.(a,b,c,d e+1)
else
|*Prepare newly computed A-item for routing.*|
eq(R1[0, 1].left) < A,
eq(R1[1,0].right) < A,
eq(R2[0].right) < A,
eq(R3[1].left) < A;
|¥*Compute B-item and prepare for routing.*|
if P.(a,a,c, a, a) then
B« AU[B of P(a,a,c—1,a,a)l,
send B to P.(a,a,c+1,a,a),
endif ;
if P.(a,a, a, a, a) then
B< BU[B of Pi(a,a,a,a,a)l;
if x =0 then
(2) eq(R3[0].right)«< B
else
eq(R2[1].left) « B,

(1)

endif ;
endif ;
ROUTE-REGISTERS;
clear all data registers and accumulators;
endif ;
end RECOGNIZE,

The assignment statements labeled (1) and (2) update the data registers that are
supposed to hold the A or B item, respectively, computed at the PE (initially, all such
registers would contain J). This is done so that these newly computed items can be
forwarded to other PEs by procedure ROUTE -REGISTERS.

At forward sweep (n+1) processor P(0, 0,0, 0,0) sends a ‘“‘completion” signal to
all other processors. When the signal reaches P(n, n, n, n, n), this processor checks
whetherin B(0, n) (stored in the B register of either of its PEs) thereisarule(—, ®, —, —)
such that @ is the root node of some initial tree of the grammar and constraint (Q) is
not of type “OA.” If there is such a rule, it initiates the parse recovery phase described
in the next section; otherwise, it sends back a “reject” signal to P(0, 0, 0, 0, 0) and the
computation halts.

If the input string is valid, the recognition phase ends in processor P(n, n, n, n, n)
at forward sweep (n +1). In terms of clock cycles, this corresponds to timestep (6n +1),
which is linear in the length of the input string.

4.4. A finite-state implementation. It is clear that only a finite amount of informa-
tion is stored in the local memory of each PE since each register stores sets whose size
depends only on the underlying grammar and not on the length of the input string.

Similarly, processor indices need not be stored as there are only a finite number
of different processor (or PE) “types” that need to be distinguished. These include
the processors specifically referred to in procedure RECOGNIZE (e.g., P(a,0,0,0,0),

20 M. PALIS, S. SHENDE, AND D. WEI

P(1,1,1,1,1), P(a, a, c, a, a), primary processors, etc.), as well as those whose indices
satisfy the relations given in Fact 4.1. These processors can be “marked” during the
zeroth forward sweep by propagating appropriate “control signals” through the array.
For instance, to mark all primary processors (i.e., P(a, b, ¢, d,) such that b=d =e),
the following steps can be performed. When P(0, 0, 0, 0, 0) receives input symbol ¢, it
marks itself as primary. It then sends a signal to all processors {P(q,0,0,0,0)} via the
[1,0,0,0,0] links, and in turn each P(a,0,0,0,0) sends the signal to processors
{P(a, b,0, b, b)} viathe[0,1,0, 1, 1] links. Finally, each P(a, b, 0, b, b) sends the signal
to processors {P(a, b, ¢, b, b)} via the [0,0, 1,0, 0] links. All processors receiving the
signal mark themselves as primary. Similar schemes can be used to mark other processor
types.

Activating PEs at the right times (see Fact 4.2) can be done in a similar way.
Observe that a PE P,(a, b, , d, e) satisfying conditions (2)-(4) of fact 4.2 first becomes
active at forward sweep a, and remains active till the end of the recognition phase.
Thus, it is only necessary to mark such processors at the first sweep they become active.
Informally, this can be accomplished as follows. During the zeroth forward sweep,
mark all PEs (say by “*”) satisfying conditions (2)-(4) of Fact 4.2 using a scheme
similar to the one described in the previous paragraph. In addition, perform the
following steps. When P(0,0,0,0,0) receives ¢ at forward sweep zero, mark this
processor by “#.” From P(0,0,0,0,0), send “#” to all processors {P(a,0,0,0,0)}
via the [1,0,0,0,0]" links (the “+” indicating a sweep delay). Thus, processor
P(a,0,0,0,0) receives “#” at forward sweep a. Finally, during the same sweep when
P(a,0,0,0,0) receives “#,” send “#” to all other processors in the subarray
P(a,*,*, * *). PE’s marked both “*” and “# are labeled active.

Processor P(n,n,n,n,n) can also be determined without knowing n. This is
because P(n, n, n, n, n) is the only processor of the form P(a, a, a, a, a) (which is
specially marked) that becomes active and receives the “completion” signal (discussed
in the previous subsection) in consecutive forward sweeps.

Finally, the neighboring processors of P(a, b, ¢, d, ¢) can be reduced to those in
the set [P(a+1,0,0,0,0), P(0,b+1,0,0,0),---,P(0,0,0,0,e+1)} as follows: to
send data via link [Aa, Ab, Ac, Ad, Ae], the data is instead sent via the sequence of
links [Aaq, 0, 0, 0, 0], [0, Ab, 0,0,0], - - - ,[0,0,0,0, Ae]. The delay is the same in either
case, namely, (Aa+Ab+Ac+Ad+Ae).

5. The parse recovery phase. A parse of a valid input string can be recovered in
linear time by executing the parse recovery phase. This phase is initiated upon completion
of the recognition phase, i.e., once PE P(n, n, n, n, n) has determined that the input
string is valid. Recall that this happens at forward sweep (n+1), or equivalently, at
timestep (6n+1). Starting at this timestep, PE P(n, n, n, n, n) starts a sequence of
(n+1) reverse sweeps 0 through n, during which adjunction rules that make up a parse
of the input string are “marked.”

The parse recovery phase consists of three concurrent subphases: regeneration,
marking, and outputting. Each subphase begins at reverse sweep 0 and ends at reverse
sweep n.

The marking subphase is a parallelization of procedure SEARCH-FOR-PARSE
described in § 2; i.e., it searches back through the recognition matrix A and “marks”
the parse rules. However, since the recognition phase builds A incrementally, only a
small portion of the the matrix (in particular, {A(j, j, k,)|l = n}) would actually be
present in the primary processors of the array at the start of the parse recovery. Thus,
the “lost” items should somehow be recovered to proceed with the marking process.

AN OPTIMAL PARALLEL PARSER 21

This can be done in a simple way: the idea is to “regenerate” the configurations of
the array (i.e., contents of the processor registers) at forward sweeps 0,1,---,n in
reverse order. That is, given the array configuration at the end of forward sweep n, we
regenerate, in one reverse sweep, its configuration at the end of forward sweep n—1,
then from this its configuration at the end of forward sweep n —2, etc. The regeneration
subphase accomplishes this task.

5.1. The regeneration subphase. The regeneration subphase is carried out during
reverse sweeps 0 through n. During reverse sweep s, 0= s = n, the array “reconfigures”
itself so that the values of the data registers of every processor are the same as those
at the end of forward sweep (n—s). (Note that forward sweep n+1 does not affect
the data registers of the processors.) This is accomplished by routing the items stored
in the registers in the reverse of the directions they took during the recognition phase
(i.e., the data flows from higher-numbered to lower-numbered processors).

We now examined in detail how to make the above scheme work. Consider the
sets of data registers S} =[R1[y, z].left}, S5={R2[y].left}, and S%={R3[z].left} of
some PE P. From Table 4.1 observe that a register in any of these sets is routed to an
output link with superscript “+”°. The extra delay associated with this link implies that
if the value of the register is routed at forward sweep s, then it reaches the destination
PE at forward sweep (s+1). That is, we have Fact 5.1.

FAcT 5.1. Let v be the contents of an S'-register, i =1, 2, 3, of PE P at forward
sweep s. Then, at forward sweep (s+1), there is a copy of v in some S:-register of a
PE adjacent to P.

Fact 5.1 implies that given the value of the S:-registers at forward sweep (s+1),
their values at forward sweep s can be regenerated by simply reversing the directions
of the routes specified by the routing scheme.

Consider now the sets S;={RI1[y, z].right}, S;={R2[y].right}, and S3;=
{R3[z].right}. From the routing Table 4.1, it is clear that because of the absence of
the superscript “+” in the output links for any register in these sets, the value of the
register at forward sweep s reaches the destination PE also at forward sweep s. In
other words, the register’s value is effectively lost in the next forward sweep. Thus, it
should somehow be stored before the next forward sweep is executed. We make the
following observations.

Facrt 5.2. For every PE P=P,.(a, b, ¢, d, e):

(1) The contents of an Si-register of P at forward sweep s has copy in some
S1-register of a PE in subarray P(aq, a, *, *, *) at forward sweep s.

(2) The contents of an Sj-register of P at forward sweep s has a copy in some
Si-register of a PE in subarray P(s, *, *, * *) at forward sweep s.

(3) The contents of an Si-register of P at forward sweep s has a copy in some
S3-register of a PE in subarray P(s, s, *, *, *) at forward sweep s.

Fact 5.2 reveals how the register values should be stored. In particular, Facts
5.2(2) and (3) require us to store only the contents of the S5-registers of PEs in subarray
P(s,*,* * *) and the Si-registers of PEs in subarray P(s,s,*,* *) at the end of
forward sweep s. This is enough to guarantee that the contents of the S3- and S3-registers
of all other PEs active at forward sweep s will be remembered since they have copies
in these PEs. Observe that, during the recognition phase, PEs in these subarrays first
become active at forward sweep s so that the PEs in effect “know’ when to store the
register values. More precisely, each PE of the form P,.(s, b, ¢, d, e)(P.(s, s, ¢, d, e)) has
duplicate S} (S3)-registers (see Fig. 5.1). When the PE first becomes active, it copies
the contents of its S5 (S3)-registers into the corresponding duplicate registers. The

22 M. PALIS, S. SHENDE, AND D. WEI

(case 2)

Forward sweep s:

duplicates

P(s,b,c,d,e)

(case 3)

Forward sweep s:

dS3r duplicates

P(s,s,c,d,e)

F1G. 5.1. At forward sweep s, processors P(s, b, ¢, d, e)(P(s, s, ¢, d, e)) copy updated contents of register
S5(S4) into duplicate registers dS5(dS3).

contents of the duplicate registers then remain unchanged until the time when forward
sweep s needs to be regenerated during parse recovery (which happens at reverse
sweep n—s). At that time, the original registers can be restored from the duplicates
and their values routed in the reverse of the directions specified by the routing scheme.

The situation described by Fact 5.2(1) is somewhat more complicated in that every
PE of the form P,(a, q, c, d,) must store the contents of its Si-registers at forward
sweeps a, a+1,- -, n starting from the sweep at which it first became active. Thus,
the above technique would not work.

For each PE P.(aq, a, ¢, d, e), define the sequence of PEs P.(a,a,c d,e), P.(a+
1,a,c,d,e), -, P(n,a,cd, e) as the chain at P.(a,q,c, d,e). Clearly, there are
n—a+1 PEs in the chain; this number coincides with the number of forward sweeps
during which P,(a, q, ¢, d, e) is active. Moreover, the only PE in the chain for which
the first two indices are the same is P(q, a, ¢, d, ¢). Hence, it is the only PE in the
chain that needs to store its S7-registers. It should be evident that the chain can be
used to store the Si-registers of P.(a, a, ¢, d, e) in successive forward sweeps. Each
PE in the chain has duplicate Si-registers to be used for this purpose. When
P (a,a,c, d,e) first becomes active at forward sweep a, it copies the contents of its S]
registers into the corresponding duplicate registers. In succeeding sweeps, the contents
of the duplicate registers of every PE in the chain are shifted into the duplicate registers
of the next PE in the chain. The new values of the S{-registers of P.(q, a, ¢, d, e) can
then be copied into its (now vacant) duplicate registers. These steps are illustrated in
Fig. 5.2. The direction of shifting is simply reversed during regeneration, thus restoring
the Si-registers of P.(aq, a, ¢, d,) to their proper values. These values can then be
reverse-routed to other PEs during the reverse sweep.

AN OPTIMAL PARALLEL PARSER 23

Forward sweep a

" " a+1
’ " " n
P(n,a,c,d,e)
. | Indicates active processor
FIG. 5.2. The chain of processors P(a,a,c,d,e), Pla+1,a,¢d,e), - -,P(n,a,cd,e) is used to

remember the contents of the S| registers of processor P(a, a, ¢, d, e) at forward sweeps a to n.

From the above discussion, it is clear that the data registers of all PEs are properly
updated at each new reverse sweep. For primary PEs, we would also like that their A
registers be properly updated. Moreover, for primary PEs computing B-items (i.e.,
PEs of the form P, (a, a, a, a, a)), we would require updated values of their B registers.
These can be accomplished by reversing the assignment statements labeled (1) and (2)
in procedure RECOGNIZE, i.e.:

(1) If the PE is a primary PE, then A< eq(R1[0, 1].left)U eq(R1[1, 0].right) U
eq(R2[0].right)U eq(R3[1].left).

(2) If the primary PE is of the form P.(a, a, a, a, a), then B < eq(R3[0].right) if
x =0, else B« eq(R2[1].left).

Finally, we observe that in regenerating forward sweep s from forward sweep
(s+1), PEs in subarray P(s+1,* * * *) should cease becoming active. This can be
done by reversing the order of activations of PEs during the recognition phase (see § 4.4).

From the above discussion, we thus have the following.

THEOREM 5.1. The configuration (contents of data registers, plus accumulator reg-
isters specified in (1) and (2) above) of each PE at reverse sweep s, 0= s = n, is identical
to its configuration at the end of forward sweep (n—s).

5.2. The marking subphase. Concurrently with the regeneration phase, the pro-
cessor array executes a marking subphase during which it searches and marks adjunc-
tion rules that make up a parse of the input string. In the following discussion, we
assume that during each reverse sweep, the marking process is performed only after
the regenerated values of the data registers have “settled.”

Let v={conv, ®,T, A) be the rule found by processor P(n, n, n, n,n) (in the B
register of one of its PEs) at the end of the recognition phase. At reverse sweep 0, the
marking subphase starts with P(n, n, n, n, n) marking the rule v in the B registers of
both its PEs. (In practice, a set of rules can be stored as a bit vector, one bit per rule;
marking a rule then simply translates to marking the bit corresponding to the rule.)

24 M. PALIS, S. SHENDE, AND D. WEI

Now, consider a processor of the form P(aq, a, a, a, a) and suppose that at reverse
sweep (n—s) it has a marked rule v in either of its B registers. One can verify that
ve B(q, s), where g = (s —a). During the same reverse sweep, P(q, a, a, a, a) sends v
to the sequence of processors {P(a, a, ¢, a, a)|c=a} via the [0,0, —1, 0, 0] links. Let
P be the first processor in this sequence such that the A register of one of its PEs
contains v. This processor then marks the occurrence of v in A and “disables” the
search in the remaining processors by no longer sending v to the next processor in
the sequence. Informally, the steps just described has the effect of “decomposing”
B(gq, s) into its component items {A(q, r, r, s)| g = r = s} and choosing one item contain-
ing v as the item from which a convolving pair of v is to be searched.

The marking process continues from every primary PE P,(a, b, ¢, b, b) that finds
a marked rule v’ in its A register. The PE first executes function REDUCE (v') (see
§ 2.3) to obtain a (possibly) new rule v ={conv, ®, ", A). It then checks the conv field
of v to determine the subarray of PEs from which to search a convolving pair of v. If
conv =0, then no search for a convolving pair is needed. If conv=2, P.(a, b, c, b, b)
sends v to PEs {P.(a, b, ¢, d, b)|d = b}. Let P be the first PE in this sequence such that
for some register-pair R2(y), there are rules v,€ R2[y].left and v,€ R2[y].right
such that v=uv, *,v,. This PE marks all occurrences of v, (v,) in eq (R2[y].left)
(eq (R,[y].right)). The search is then disabled for the remaining PEs in the sequence.
If conv=3, the same steps are carried out except that v is sent to the subarray
{P.(a, b, c, b, e)|e=b} and the register-pairs examined are those in the set {R3[z]}.

The case when conv = 1 is slightly more complicated. Here, we wish to find exactly
one processor in the two-dimensional subarray {P,(a, b, c, d, €)|d, e = b} such that for
some register-pair R1[y, z] there are rules v, € R1[y, z].left and v,€ R1[y, z].right such
that v =0, *, v,. A naive extension of the linear search described above to two
dimensions would not work since convolving pairs in PEs the same distance away
from P.(a, b, ¢, b, b) would be marked at the same time.

The problem can be solved by introducing the following modification to the
recognition phase. While performing the union operation during a forward sweep,
each PE in the “rightmost column” of the subarray (i.e., PEs {P.(a, b, ¢, d, b)|d = b})
collects from all PEs in the same row, the rules resulting from adjunctions (conv =1)
and stores the set of rules in a temporary register, say temp. Each rightmost PE performs
this step at every forward sweep. However, in order not to lose the values of temp
during previous forward sweeps, the rightmost PE, say P.(a, b, ¢, d, b), shifts the
previous values of temp along the chain of PEs PcJa,b,c d b), P(a+1,b+
1,¢,d,b),-- -, P(n,b+(n—a),c d b). (The steps are similar to those shown in Fig.
5.2.) This way, during the regeneration phase, the proper values of temp can be restored
by performing the shifts in the reverse direction.

The two-dimensional search for a convolving pair can now be reduced to two
linear searches as follows (see Fig. 5.3). From primary PE P,(a, b, c, b, b), the marked
rule v is sent to the rightmost column of PEs in the subarray. Each rightmost PE
receiving v first checks whether v is in register temp. If it is, then the rightmost PE
“knows” that a convolving pair of v is in some PE in its row. The PE then disables
the search in the succeeding rows and initiates a linear search for a convolving pair
of v among the PEs in its own row, marking only the first convolving pair that is
encountered.

The regeneration subphase that runs concurrently with the marking subphase
eventually brings rules marked in the data registers to the A registers of primary PEs
or the B registers of PEs of the form P,(a, a, a, a, a) (recall that these registers are

AN OPTIMAL PARALLEL PARSER 25

OOoo0oo0O

O P,@b,c.d,b)

OO0
Oooo
D E] D D Py(a,b,c,b,b)

F1G. 5.3. Two-dimensional search accomplished by two linear searches.

updated as described in § 5.1). From these PEs the search-and-mark process is repeated.
Thus, at the end of reverse sweep n (after all forward sweeps have been regenerated),
all rules that make up a parse tree of the input string have been marked. From among
these rules, only those indicating adjunctions (conv =1) actually need be output. The
outputting process is described in § 5.3.

5.3. The parse outputting subphase. The parse outputting subphase carries out the
process of systematically outputting adjunction rules that are marked during the
marking subphase. This subphase runs concurrently with the regeneration and marking
subphases and is completed at the end of reverse sweep n.

Proposition 5.1 below follows directly from Proposition 2.1 and states the order
in which the rules should be output.

PROPOSITION 5.1. A parse of the input string can be obtained by outputting the
adjunction rules marked during the marking subphase in the following order:

(1) Rules marked at reverse sweep s are output before those at reverse sweep s —1.

(2) For a fixed reverse sweep s, marked rules in subarray P(a,*,*,*, *) are output
before those in subarray P(a+1,*,*, * *),

(3) For a given reverse sweep and a fixed a, marked rules in subarray P(a, b, *, * *
are output before those in subarray P(a, b+1,%*,*, *),

For example, consider Fig. 5.4, showing a sample parse tree for a string of length
n=9. The entries A(i,j, k, I) shown in brackets next to the parse tree nodes (rules)
indicate that the rule belongs to the corresponding matrix entry. Thus, for instance,
rule R1 belongs to A(1,2,4,6). During the marking subphase, the rules would be
marked in the PEs listed below the figure, at the specified reverse sweeps. According
to Proposition 5.1, these rules are output in the order R2, R1, R3, R, that is also the
order they are output by the sequential algorithm SEARCH-FOR-PARSE (see Proposi-
tion 2.1).

We now state the following fact that allows us to perform the routing required to
output the rules in the desired order.

Fact 5.3. In any reverse sweep and for fixed a and b:

(1) There is at most one marked adjunction rule in the subarray of primary
processors P(a, b,*, b, b).

(2) If there is a marked adjunction rule in subarray P(a, b, *, b, b), then there are
no marked adjunction rules in subarrays {P(a’,b’,*, b’,b’)|a’<a,b'=b} and
{P(a',b',*,b',b")|a’>a, b'=b}.

Fact 5.3(1) implies that if in any reverse sweep s there is a marked adjunction
rule in primary processor P(a, b, ¢, b, b), this rule can be sent to processor P(a, b, 0, b, b)

26

via the [0, 0, —1, 0, 0] links without “colliding> with any other rule (since there is at
most one).

Now consider the rules reaching processors {P(a, b,0,b,b)|0=b=a=s} at
reverse sweep s. By Fact 5.3(2), the rules in these processors can only have the pattern
shown in Fig. 5.5. In particular, if the processor labeled “*” contains a marked

M. PALIS, S. SHENDE, AND D. WEI

R [A(0,4,4,9)]

T

R1 [A(1,2,4,6)] R3 [A(6,8,9,9)]

R2 [A(1,1,4,6)]

Sample parse: R,, R;, R3, R.

Re[A(0,4,4,9)] is in P((9,9,5,9,9) at reverse sweep 0
R1e[A(1,2,4,6)] is in Py(5,3,2,3,3) at reverse sweep 3
R2e[A(1,1,4,6)] is in Py(5,2,2,2,2) at reverse sweep 3

R3e[A(6,8,9,9)] is in Py(3,2,2,2,2) at reverse sweep 0

F1G. 5.4. A sample parse tree for a string of length n=9.

b
2 3 4
O O

N

7

5
.
N
N

N N
RENANANAN

X NN
~N
*

\\\ \\\ X X

AN
FIG. 5.5. Interpretation of Fact 5.3(2).

hn b~ W N = O

AN OPTIMAL PARALLEL PARSER 27

adjunction rule, then there can be no marked rules in the shaded areas. This implies
that there can be at most one rule in any column of the subarray and the rule, when
read from left to right, satisfies Proposition 5.1(2) and (3).

The following steps can thus be performed. At each reverse sweep s, every processor
P(a, b,0, b, b) containing a marked adjunction rule sends the rule to processor
P(0, b,0, b, b) via the [—1,0,0,0,0,] links, then to processor P(0, b,0,0,0) via the
[0,0,0, —1, —1] links. Processor P(0, b, 0, 0, 0) in turn outputs any marked adjunction
rule it receives. The rules output by the linear subarray P(0, b, 0, 0, 0)|0= b = n} thus
satisfies Proposition 5.1(2) and (3) when read off starting from P(0,0,0,0,0) to
P(0,n,0,0,0).

For example, in the case of the parse tree of Fig. 5.4, rule R3, which is marked
in processor P(3,2,2,2,2) at reverse sweep 0, is first routed P(3,2,0,2,2), then to
P(0,2,0,2,2), and finally to processor P(0,2,0,0,0) where it is output. The other
rules are routed in a similar way. Fact 5.3 guarantees that each rule reach its final
destination without colliding with any other rule.

Finally, if the outputs of the subarray { P(0, b, 0, 0, 0)|0= 0 = n} are listed in reverse
order of sweeps, (i.e., insert the rules output in reverse sweep s before those output
in reverse sweep s —1), the resulting sequence of rules constitutes a complete parse of
the input string (see Proposition 5.1(1)).

Remark 5.1. With an additional number of linear steps, the rules output by the
subarray can in fact be pipelined so that they are output in the desired order from
processor P(0, 0, 0,0, 0). Intuitively, this can be done because although we are observing
O(n?) outputs from the subarray, there are at most n marked adjunction rules that
actually appear and the rest are dummy outputs. We omit the details, as the technique
is similar to that described in [CHANS87].

Counting the time for the recognition phase, the total time complexity of the
parallel algorithm is easily shown to be (12n+1) = O(n), where n is the length of the
input string.

6. Conclusion. We have presented an optimal linear-time parallel parsing
algorithm for tree adjoining languages, a class that properly includes all context-free
languages. The parallel model is quite simple in that it consists of finite-state processors
whose function and size are independent of the length of the input.

We also mention that TALs can be shown to be NC® (=class of languages
recognizable by O(log® n)-time bounded and O(log n)-space bounded alternating
Turing machines (ATMs)) by extending the CFL recognition algorithm on an ATM
given in [RUZZ80]. However, just like the latter, converting the ATM to a uniform
Boolean circuit ora PRAM results in an inordinate increase in the number of processors
(n'? processors in O(log® n) time seems the best so far). The same is true in fact for
CFLs for which the best known PRAM algorithm operates in O(log” n) time using n®
processors [RYTT8S5].

It is thus an interesting open question whether TALs (or even CFLs) can be
recognized in sublinear parallel time using a near-optimal number of processors.

7. Appendix. In this appendix we sketch the procedure for deriving the routing
table (Table 4.1), and show that procedures UPDATE-REGISTERS and ROUTE-
REGISTERS (that make use of the table) properly update and route the values of
data registers of every active PE. To do this, it is convenient to state the ‘“‘inverse
mapping” of Lemma 4.1.

DEerINITION. For integers s, a, b, ¢, d, e, and x, y, z€{0, 1}, define

I.=s—a,xec{0,1},

28 M. PALIS, S. SHENDE, AND D. WEI

{s—a+b—c ifx=0,
Jy =]
s—a+c ifx=1,
s—c ifx=0
K. = ’
* {s—b+c ifx=1,
L.=sx€{0,1},
s—a+b-d ifxe{0,1}and y=0,
M, ={s—a—-c+d ifx=0andy=1,
s—a—-b+c ifx=1landy=1,
s+b—c—e ifx=0andz=0,
P.={s+c—e ifx=1andz=0,
s—b+e ifxe{0,1}and z=1.

Lemma Al (Inverse Mapping of Lemma 4.1). At forward sweep s, the data registers
of an active PE P,(a, b, c, d, e) have the following values:

(1) Rl[y’ Z]'Ieﬁ = A(Mxya Jx’ Kx’ sz)’

(2) Rl[y’ Z]'right = A(Ix’ Mxy’ PXZ’ LX)’

(3) R2[yl.left = B(I,, M,,),

(4) R2[y].right=A(M,,, J,, K, L,),

(5) R3[z].left = A(I, Jy, Ky, Py.),

(6) R3[z].right= B(P,,, L,).

DEerINITION. Link [Aa, b, Ac, Ad, Ae] ([Aa, Ab, Ac, Ad, Ae]") is said to cover data
register r of PE P.(a, b, c, d, e) if and only if the value stored in this register is the
same as that stored in register r of P,(a—Aa, b—Ab, c—Ac, d —Ad, e — Ae) at forward
sweep s (s—1).

The routing table (Fig. 4.1) is essentially a list of links that cover the data registers
of a PE. We now show how this can be derived. We only illustrate the derivation for
data registers R1[y, z].left; the links covering other data registers can be obtained
similarly.

Consider data registers R1[y, z].left of an active PE P,(aq, b, c, d,), such that x,
¥, z€{0, 1}. Suppose that x =y =z=0. Then by Lemma Al, at forward sweep s=a,
register R1[0, 0].left of Py(a, b, c, d, e) contains A(My,, Jy, Ky, Ly). We wish to find
an active PE Py(a —Aa, b—Ab, c—Ac, d —Ad, e — Ae) such that at forward sweep s — As,
register R1[0, 0].left of this PE also contains A(My, Jo, Ko, Ly). By Lemma Al, it
should be the case that

My=s—a+b—d=(s—As)—(a—Aa)+(b—Ab)—(d —Ad),
Jo=s—a+b—-c=(s—As)—(a—Aa)+(b—Ab)—(c—Ac),
Ky=s—c=(s—As)—(c—Ac),
Pyp=s+b—c—e=(s—As)+(b—Ab)—(c—Ac)—(e—Ae),

or equivalently,

As—Aa+Ab —-Ad =0,
As—Aa+Ab—-Ac =0,
As —-Ac =0,
As +Ab—-Ac —Ae=0,

where As, - - -, Ae {0, 1} but not all zero.
The solutions (As, Aa, Ab, Ac, Ad, Ae) to the above system of equations are
1,1,1,1,1,1), (1,0,0,1,1,0), and (0,1,1,0,0,1) that correspond to links

AN OPTIMAL PARALLEL PARSER 29

[1,1,1,1,17%, [0,0,1,1,0]", and [1, 1,0, 0, 1], respectively (recall that a superscript
“+” denotes a sweep delay).

Each of the above links covers register R1[0, 0].left of an active PE Py(aq, b, ¢, d, e)
only if the adjacent PE associated with the link is also active (otherwise, the latter by
definition cannot route items stored in its registers). We now determine under what
conditions this property holds.

Consider first link [1,1,1,1,1]" that represents data being forwarded from PE
Py(a—1,b—1,c—1,d—1, e—1) at forward sweep s —1 to PE Py(a, b, ¢, d, e) at forward
sweep s. If both PEs are to be active, then by Fact 4.2 it should be the case that

(1) (b=as=s)=(b—-1=sa-1=5-1),

(2) (b=2c=2b)=>(b—1=2¢c-2=2b-2),

(3) (b+c=2d=2b)=(b+c-2=2d -2=2b-2), and

(4) 2b—c=2e=2b)=(2b—c—-1=2e-2=2b-2).

It is easy to see that conditions (1) and (3) are always true. On the other hand, (2) is
true except when 2¢=b and (4) is true except when 2e =2b—c. It follows that link
[1,1,1,1,1]" covers register R1[0, 0].left of PE Py(a, b, ¢, d,) except when 2¢=b or
2e=2b-c

Similarly, it can be shown that link [0, 0, 1,1, 0] covers the register except when
s=a or 2c=b, b+1 or 2d=b+c or 2e=2b—c. Observe, however, that anything
covered by this link is also covered by [1, 1,1, 1, 1]*. Thus, [0, 0, 1, 1, 0]" is redundant
and can be eliminated. Finally, [1, 1,0, 0, 1] covers the register except when b = c or
b = d. Thus, the two links {[1,1, 1, 1, 1]%, [1, 1, 0, 0, 1]} together cover the register except
when (2c=bor2e=2b—c) and (b=cor b=d), or equivalently, (b=c=0) or 2c=b
and b=d) or 2e=2b—c and (b=c or b=d)).

Proceeding in exactly the same manner, one can determine the links covering all
other data registers R1[y, z].left of P,(a, b, c, d, e) for other values of x, y, and z, and
under what conditions the coverings hold. These are summarized in Table Al. Observe
that (except for the last column) Table Al is exactly the routing table given in
Table 4.1.

The exceptions in the last column of Table Al imply that certain data registers
of certain PEs may in fact be not covered by any of their associated links. However,
recall that procedure UPDATE-REGISTERS operates in such a way that any item
targeted for data register r of PE P is placed in all registers r' € eq(P, r). Thus, it is
sufficient to show that for any data register, there is some register in the same equivalence
class that is covered by some link. The register equivalence classes are given in Fact
4.1, which we restate here for quick reference.

Fact 4.1. Let P.(a, b, ¢, d, e) be a PE. Then at any forward sweep:

(1) If (x=0 and 2d=b+c) or (x=1 and 2d =2b—c¢), R1[0, z].t = R1[1, z].t
and R2[0].t= R2[1].t, where t € {left, right}.

(2) If(x=0and2e=2b—-c)or(x=1and2e=b+c), R1[y,0].t=R1[y, 1].t and
R3[0].t= R3[1].t, where t € {left, right}.

(3) If 2¢ = b, every data register r of P.(a, b, ¢, d, e) has the same contents as data
register r of Pi(a, b, ¢, d, e).

For convenience, we shall call a PE satisfying condition (i) above as a type (i) PE.

First observe from Table Al that regardless of its type, an active PE P,(a, b, c, d, e)
satisfying b = ¢ =0 does not have a covered register. However, since d, e = b these PEs
are necessarily of the form P.(q,0, 0,0, 0) and hence are PEs that compute boundary
items (see procedure RECOGNIZE) and do not require data from adjacent PEs.
Similarly, Table A1l states that register R1[0, 1].left of any PE satisfying b=d =e (a
primary PE) is not covered. However, for a primary PE, R1[0, 1].left is the register

30 M. PALIS, S. SHENDE, AND D. WEI

TABLE Al
Links covering registers R1[x, y].left of PE P.(a, b, c, d, e).

Py(a, b, c, d, e)
Register Links Exceptions

R1[0, 0] - left [1,1,1,1,1]" (b=c=0)+2-(b=c)+2-(b=d)+3-(b=d)
[1,1,0,0,1]

R1[0, 1] - left [1,1,1,1,0]" (b=c=0)+(b=d=¢e)+3-(b=4d)
[1,1,0,0,1]

RI1[1,0] - left [1,1,1,1,17% (b=c=0)+1-2+1-3+2-(b=¢)
[1,1,0,1,1]

R1[1,1] - left [1,1,1,1,0]" (b=c=0)+1-3+1-(b=¢)
[1,1,0,1,1]

Py(a,b,c,d,e)
Register Links Exceptions

R1[0, 0] - left [1,1,0,1,1]* (b=c=0)+2-3+2-(b=4d)
[1,1,1,0,1]

R1[0, 1] - left [1,1,0,1,0" (b=c=0)+(b=d=e)+3-(b=e¢)
[1,1,1,0,1]

RI1[1,0] - left [1,1,0,1,11° (b=c=0)+1-2+1-(b=c)+2-3
(1,1,1,1,1]

RI1[1,1] - left [1,1,0,1,0]" (b=c=0)+1-(b=c)+1-(b=¢e)+3-(b=e)
[1,1,1,1,1]

Legend:

1=(x=0and b+c=2d) or (x=1and 2b—c=2d)
2=(x=0and 2b—c=2e) or (x=1and b+c=2e)
3=(2c=»)

assigned to the A-item computed by this PE during the sweep and hence should not
be covered.

The rest of the exceptions listed in Table Al can be handled by considering PEs
of different types and applying Fact 4.1. For instance, suppose that the PE is type (1).
Then, from Table Al, registers to R1[0, z].left, z€{0, 1}, of the PE are not covered.
However, by Fact 4.1(1), R1[1, z].left is equivalent to R1[0, z].left, which is covered.
Since UPDATE-REGISTERS places the value targeted for a register in all registers
in the same equivalence class, it is clear that for a type (1) PE, registers R1[1, z].left
would also be updated. A similar analysis can be carried out for other PE types.

To summarize, using Fact 4.1, the following proposition can be proved.

ProrosiTION Al. Let P=Pa, b, c, d, e) be an active PE. For every data register
r of P, there is at least one register r' € eq(P, r) such that some link in the routing table
covers r', except for the following cases:

(1) If Pis such that b= c=d =e =0, then no data register of P is covered.

(2) If P is such that b=d =e, then data registers in the sets eq(R1[0, 1].left),
eq(R1[1, 0].right), eq(R2[0].right), and eq(R3[1].left) are not covered.

(3) If Pis such that a=b = c = d = e, then data registers in the sets eq(R3[0].right)
(if x =0) or eq(R2[1].left) (if x=1) are not covered.
Part (1) corresponds to PEs computing boundary items; such PEs do not receive data
from adjacent PEs. Part (2) corresponds to primary PEs; the value stored in the registers
listed is the A-item computed within the PE during the sweep. Finally, (3) corresponds

AN OPTIMAL PARALLEL PARSER 31

to PEs of the form P.(a, a, a, a, a) that compute B-items; the value stored in the
registers listed is the B-item computed within the PE. (See procedure RECOGNIZE
for details.)

Proposition Al implies that the procedures UPDATE-REGISTERS and ROUTE-
REGISTERS properly updates and routes the data registers of every active PE. We
also mention the fact that ROUTE-REGISTERS may actually forward items from an
active PE to an inactive PE. However, since by definition an inactive PE does not
participate in any computation or data routing, items received by inactive PEs are
simply discarded.

REFERENCES

[AHO72] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation and Computing, Vol. 1,
Prentice Hall, Englewood Cliffs, NJ, 1972.

[CHANS7] J. H. CHANG, O. H. IBARRA, AND M. A. PALIS, Parallel parsing on a one-way array of
finite-state machines, IEEE Trans. Comput., 36 (1987), pp. 64-75.

[CHIA84] Y. CHIANG AND K. S. Fu, Parallel parsing and VLSI implementations for syntactic pattern
recognition, IEEE Trans. Pattern Anal. Machine Intelligence, 6 (1984), pp. 302-313.

[COPP87] D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication for arithmetic progressions, in
Proc. 19th Annual ACM Symposium on Theory of Computing, Association for Comput-
ing Machinery, New York, 1987, pp. 1-6.

[HOPC79] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, Reading, MA, 1979.

[JOSH75] A. K. JosHI, L. S. LEvY, AND M. TAKAHASHI, Tree adjunct grammars, J. Comput. System
Sci., 10 (1975), pp. 136-163.

[KOSA75] S. R. KosARAJU, Speed of recognition of context-free languages by array automata, SIAM 1J.
Comput., 4 (1975), pp. 331-340.

[KROCS85] A. S. KROCH AND A. K. JosHI, The linguistic relevance of tree adjoining grammars, Technical
Report MS-CIS-85-16, Department of Computer and Information Science, University
of Pennsylvania, Philadelphia, PA, April 1985.

[RYTTS8S] W. RYTTER, The complexity of two-way pushdown automata and recursive programs, in
Combinatorial Algorithms on Words, A. Apostolico and Z. Galil, eds., Springer-Verlag,
Heidelberg, 1985, pp. 341-356.

[RUZZ380] W. L. Ruzzo, Tree-size bounded alternation, J. Comput. Systems Sci., 22 (1980), pp. 218-235.

[VALI75] L. VALIANT, General context-free recognition in less than cubic time, J. Comput. System Sci.,
10 (1975), pp. 308-315.
[VIJA86] K. VUAYASHANKER AND A. K. JOSHI, Some computational properties of tree adjoining

grammars, in Proc. 11th Meeting of Association of Computational Linguistics, University
of Chicago, Chicago, IL, August 1986.

[VIJA87] K. VIJAYASHANKER, Tree adjoining grammars, Ph.D. dissertation, Department of Computer
and Information Science, University of Pennsylvania, Philadelphia, PA, 1987.

SIAM J. COMPUT. © 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 32-43, February 1990 002

COMPLEXITY AND UNSOLVABILITY PROPERTIES OF NILPOTENCY*

I. R. HENTZELT AND D. POKRASS JACOBS#

Abstract. A nonassociative algebra is nilpotent if there is some n such that the product of any n
elements, no matter how they are associated, is zero. Several related, but more general, notions are left
nilpotency, solvability, local nilpotency, and nillity. First the complexity of several decision problems for
these properties is examined. In finite-dimensional algebras over a finite field it is shown that solvability
and nilpotency can be decided in polynomial time. Over Q, nilpotency can be decided in polynomial time,
while the algorithm for testing solvability uses a polynomial number of arithmetic operations, but is not
polynomial time. Also presented is a polynomial time probabilistic algorithm for deciding left nillity. Then
a problem involving algebras given by generators and relations is considered and shown to be NP-complete.
Finally, a relation between local left nilpotency and a set of natural numbers that is 1-complete for the class
T1, in the arithmetic hierarchy of recursion theory is demonstrated.

Key words. nonassociative algebra, nilpotent, solvable, NP-complete, power associative, arithmetic
hierarchy, recursively enumerable, recursive, 1-complete

AMS(MOS) subject classifications. 68Q25, 68Q15, 17A99, 03DS5S

1. Introduction. A nonassociative algebra (or simply an algebra) over a field F is
a set A together with two binary operations, * and +, such that (A, +) is a vector space
over F,

(1) x*(ytz)=x*y+x*z
(2) (y+z)xx=yxx+z*x
(3) a(x*y)=(ax)*y=xx*(ay)

for all x, y, z€ A, and « € F. The operation * is not necessarily associative. Throughout
this paper we shall suppress the * by writing, for example, xy instead of x * y.

If B and C are arbitrary sets in a nonassociative algebra A, then by BC we usually
mean the subspace spanned by all elements in {bc|be B, ce C}.

For each integer n =1 let us denote by A" the subspace spanned by all products
of n (not necessarily distinct) elements in A, in all (1/n)(3"-7) associations. Let us
now define AV = AV = A"Y = A, We then define, for each n=1,

A("+l)=A(")A("), A("+l>=A<">A+AA(">, AT A A7,

It is clear that the A" and A are descending chains of ideals, the A'™ is a descending
chain of left ideals, and the A is a descending chain of subalgebras.

If for some n, A" ={0}, we say A is nilpotent. In this case, the minimal such n for
which A" is zero is the index of nilpotency. If A'™={0}, A is left nilpotent, and if
A™ ={0}, A is solvable. (The reader will note that, unfortunately, in this paper
“solvability”” carries two quite different meanings, one being the above algebraic
definition and the other being from logic.) The index of left nilpotency and index of
solvability are defined in an analogous manner to the index of nilpotency. It is easy
to see that for all i=1

A(i) c A[i] c Ai

* Received by the editors January 20, 1988; accepted for publication (in revised form) March 9, 1989.
+ Department of Mathematics, lowa State University, Ames, lowa 50011.
1 Department of Computer Science, Clemson University, Clemson, South Carolina 29634-1906.

32

NILPOTENCY PROPERTIES 33

and so nilpotency implies left nilpotency, which implies solvability. It is also easy to
show that for each i=1,

(4) A ' c AP A

The second containment in (4) follows by induction on i since A” = A" YA+ AAY V<
A'"'A+AA'"'c A’ The first containment in (4), namely A2 < A", is also obtained
by induction on i. When i =1, in fact, equality holds. Assuming we have A*" < A®
for some i=1, consider now any x€ A% Then x is a linear combination of a finite
number of products pg where pe A®* and g e A’, for some s and ¢ in which s+t =2".
Either s=2'"" or = 2", In the first case, we have pge A*A'c A 'Ac APAc AT,
In the second case we have pge AA® < A" and hence A* < A“*", completing the
proof.

An algebra is called power associative if each element generates an associative
subalgebra. In such an algebra we say an element x is nil if there exists some k,
depending on x, such that x*=0. A power associative algebra is called nil if each
member is nil. This is equivalent to saying that the subalgebra generated by x is
nilpotent. Note that in power associative algebras, nillity is implied by solvability, and
hence by nilpotency and left nilpotency.

Nilpotency and its related properties are important to the theory of algebras, since
the radical of an algebra, under suitable conditions, is nilpotent. These properties have
received thorough mathematical investigation.

The theory of complexity has been applied to both associative and nonassociative
algebras [4], [9]. The purpose of this paper is to investigate the complexity and degree
of unsolvability of certain questions about nilpotency. Our paper is organized so that
the computationally easier questions are studied first. For example, the next section
deals with questions about finite-dimensional algebras that can be answered by
algorithms performing a number of operations polynomial in the dimension of the
algebra. We then consider a probabilistic approach to nillity and nilpotency. The next
section deals with an NP-complete question. Finally, our last section classifies an
unsolvable problem by proving it to be 1-complete for the class IT, in the arithmetic
hierarchy of recursion theory.

2. Polynomially answerable questions. In this section all algebras are assumed to
be finite-dimensional over a fixed field F. We assume that F is either a finite field or
is Q, the field of rationals.

Given a finite-dimensional algebra A over F, multiplication on A is usually
described by specifying a basis v,, * - -, v, and then giving a table that gives the product
of any two basis elements. The table consists of all §; such that v, =Y _, 8;xtx. The
8;x’s are called structure constants. Given these, the multiplication of two vectors from
A can be computed by applying laws (1), (2), and (3) to arbitrary linear combinations
of the basis vectors.

Each instance of an n-dimensional algebra is therefore encoded by a sequence of
n® constants. In the case of an algebra over Q we assume that the rational constants
are given as pairs of relatively prime integers. Now let P be an algorithm for solving
a decision problem for finite-dimensional algebras encoded in this way. If x is a string
that encodes an algebra we let x| denote the length of x. Usually the complexity of P
is measured as a function T(n), indicating the maximum running time of P over all
encodings of length n. Initially, in the algorithms described in Theorems 1 and 2 below,
we deviate from this approach in two ways.

First, for the two algorithms that follow, we measure their running times as a
function of the dimension of the algebra A. Note that for algebras over a finite field,

34 I. R. HENTZEL AND D. POKRASS JACOBS

|x| is always O(n®) where n is the dimension of the algebra that x encodes. However
for Q this is not true since arbitrarily long strings can encode algebras of the same
dimension.

Second, we initially calculate the running time of an algorithm by estimating the
number of arithmetic operations (addition, subtraction, multiplication, or division)
that occur in F. We caution that this is somewhat misleading since, as we will see,
over Q it is possible for an algorithm to perform only a polynomial number of
operations, and yet require an exponential amount of time as a function of its input
length. However when we use the term polynomial time we use it in its usual sense
and we will carefully distinguish between a polynomial time algorithm and one for
which merely the number of arithmetic operations is polynomial.

Let us now make the following observations. If v; and v; are basis elements of an
n-dimensional algebra, and B € F, then computing Bv,v; takes n multiplications in F.
If w is an arbitrary vector, say w=Y|_, a,v;, then multiplying vw=Y"_, a;vv; takes
n®> multiplications and at most n> additions, and so O(n?) operations in all. Finally,
if u=Y a;v; and w=Y Bjv; are arbitrary vectors then uw=Y,_, ev,w takes O(n’)
arithmetic operations. It follows that, in general, k arbitrary vectors can be multiplied,
regardless of the association, by using O((k —1)n’) operations.

The algorithm described below will serve as a template throughout this section.

THEOREM 1. Solvability of an n-dimensional algebra A can be decided using O(n®)
arithmetic operations.

Proof. Assume A is solvable. Then if A" {0} we must have A“*" properly
contained in A”” and so dim (A“*")<dim (A"”). Hence an n-dimensional algebra is
solvable if and only if A" ={0}. The following algorithm computes a basis B for
A"V As the loop finishes each iteration for i=2, - - -, n+1, a basis for A’ has been
found.

Initialize B to the basis for A.
fori=2ton+1
(1) Let C={bb’|b and b’ e B}.
(2) Redefine B to be a basis for the span of C.

Note step (1) in the loop involves at most n”> multiplications of arbitrary vectors. Since
each such vector multiplication takes O(n*) operations, step (1) takes O(n’) operations.
In step (2) the basis for C can be found by reducing an m x n matrix, where m = n?,
to row canonical form. This can be done with O(n*) operations, and so step (1)
dominates the loop. Since the loop iterates n times, the algorithm performs O(n®)
operations. 0

THEOREM 2. Nilpotency of an n-dimensional algebra can be decided in O(n®)
operations.

Proof. By relation (4), an algebra is nilpotent if and only if A’ ={0} for some i.
By a dimensionality argument similar to the one used in the case of solvability, it
suffices to compute a basis B for A"*". An algorithm to compute B can be obtained
from the previous algorithm by replacing its step (1) with

(1) Let C={bv;, v;b|be B}

where the v; are assumed to be the original basis elements of A. The construction of
C involves the multiplication of at most 2n° vectors. This time, however, the multiplica-
tion involves a full vector b with a basis element v;, a process taking only O(n?) field
operations and so constructing C takes O(n*). The remainder of the analysis is similar
to that of the previous algorithm. 0

NILPOTENCY PROPERTIES 35

There are some important distinctions between the two algorithms presented so
far. First, the algorithm of Theorem 1 can be easily modified to compute the index of
solvability of A. Indeed the algorithm need only check for the first i for which C is
zero. On the other hand, while the algorithm of Theorem 2 can be modified in a similar
way to detect the minimal i for which A‘” = {0}, it apparently cannot tell the minimal
i for which A’ ={0}.

A second distinction between the two algorithms concerns their computational
complexity. As noted earlier, for finite fields the length of an input string x is always
O(n®) where n is the dimension of the algebra that x encodes. Furthermore, for a
finite field the operations each are bounded by a constant amount of time. Since the
algorithms of Theorems 1 and 2 are dominated by the time spent performing arithmetic
operations, Theorem 3 follows.

THEOREM 3. Over a finite field, nilpotency and solvability can be decided in poly-
nomial time. In the latter case, the index of solvability can also be calculated in polynomial
time.

Let us now consider what happens in the above algorithms when F = Q. In the
first algorithm, testing for solvability is performed by repeatedly ‘“‘squaring” the sub-
algebra A, n times. Since squaring a number (represented in base 2, say) approxi-
mately doubles the length of its representation, structure constants of length k can
produce coefficients of about length k2". The following simple examples illustrate this.
For a given n, consider the n-dimensional algebra with basis v,, v,,- -, v, where
v,0, =20, with all other products zero. The first algorithm is easily seen to experience
exponential growth since the encodings of its numbers become exponentially long.

Next, consider the algorithm of Theorem 2. We will prove that for F=Q its
complexity is bounded by a polynomial in the length of its input. However first let us
make the following simplifying observation. If A is an algebra having structure constants
{8;x} and 0 # c € Q, define A, to be the algebra with the same basis, but having structure
constants {cd;;}. It is easy to show that A is nilpotent if and only if A, is nilpotent.
Consequently, by multiplying all structure constants of A by a common multiple of
their denominators, we achieve an algebra A, in which all structure constants are
integers. If x is a string which encodes A and x, is a string encoding A,, then we have
|x.| =|x|?, and so there is no loss in assuming all algebras have integer structure contents.

If w is a vector in an algebra over Q with basis {v,, - -, v,}, and w=Y_, nu,
where the n; are integers, let us agree that |w| =max {|n;]|}, the largest absolute value
of the coefficients.

LeEMMA 1. Let A be an n-dimensional algebra over Q with integer structure constants
{6;x} and let m = max {|8;%|}. Let u be the product of k factors, each a basis element.
Then |u| =n**"Vm*".

Proof. This follows immediately from two observations: First, for each basis
element v;, |v;|=1. Second, for arbitrary vector u and w we have |uw|=
lull - |wl - n*-m. O

THEOREM 4. For finite-dimensional algebras over Q, nilpotency can be decided in
polynomial time.

Proof. We claim that the algorithm of Theorem 2 runs in time polynomial in its
input length when F= Q. Let A be an algebra represented by a string x. If A has
dimension n, then n<|x|. By the observation above we may assume all structure
constants of A are integers. Let max be the largest absolute value of all such integers.
The algorithm repeatedly executes steps (1) and (2), n <|x| times. Therefore it suffices
to show each of these steps requires only a polynomial in |x| amount of time. Note
that the members of C in step (1) are all products of at most n+1 basis elements. By

36 I. R. HENTZEL AND D. POKRASS JACOBS

Lemma 1 the absolute value of their coefficients are bounded by n*" max” and hence
have length

O(log (n*" max")) = O(n log (n)+ n log (max)) = O(|x|*).

Note that step (2) need not change the values of coefficients. It can be accomplished
by selecting a maximal linearly independent subset of C. This can be done by consider-
ing the members of C as rows and forming the matrix of all such rows. We then reduce
this matrix to a “row canonical form,” but without interchanging any rows. The nonzero
rows that remain will be a basis for the row space. Moreover the original rows
corresponding to these nonzero rows will also be a basis. This requires applying
Gaussian elimination to an m X n matrix, where m <2n?, and all coefficients have
length O(|x|*). Now, we can show there exists a polynomial p(m, n, s) of three variables
such that any m X n matrix with rational coefficients all of length less than or equal
to s can be reduced in time p(m, n, s). Hence our step (2) can be performed in time
roughly p(2n®, n, |x|*), which is bounded by a polynomial in |x|. O

Note that the index of left nilpotency can be computed by replacing step (1) from
Theorem 1 with

(1) Let C={vb|be B}.

By an argument identical to that of Theorem 4 we have Theorem 5.

THEOREM 5. Qver either a finite field or Q, left nilpotency can be decided in polynomial
time and the index of left nilpotency can be computed in polynomial time.

Recall that the O(n®) algorithm of Theorem 2 decided nilpotency, but it did not
compute the the index of nilpotency. For some additional running time, we can also
compute the index.

THEOREM 6. Quer either a finite field or Q, the index of nilpotency of an n-dimensional
algebra can be computed with O(n’) operations and in polynomial time.

Proof. We construct a list of sets B;, B,,* -, B,.; where each B; is a basis for
A'. The algorithm will successively calculate B; using the previously calculated B;’s
where j <i.

Initialize B, to the basis for A.

fori:=2ton+1
(1) Find all productsin B,B;_,, B,B;_,, -+, Bi_1B;
(2) Find a basis B; for all these vectors.
(3) If B;={0} then exit.

Here B;B; means the finite set of vectors formed by multiplying each member of B;
by a member of By. Step (1) involves at most n—1 products B;B, each calculable in
O(n’) operations, and so it takes O(n°) operations. Step (2) involves reducing at most
n® vectors to a basis and can be done in O(n’) operations. The loop iterates at most
n times and so the algorithm needs only O(n’) operations. Finally, the argument that
the algorithm runs in polynomial time, even over Q, is similar to the argument of
Theorem 4. g

3. Nillity, left nillity, and a probabilistic approach. In this section we consider
algorithms for deciding nillity. Recall that our definition of a nil algebra applied only
to power associative algebras. Suppose we are given a power associative algebra, and
we wish to decide if it is nil. Note that in an n-dimensional power associative algebra,
an element x is nil if and only if x"*' =0. For if x is nil, then it generates an associative
nilpotent finite-dimensional subalgebra, and its index of nilpotency is at most n+ 1.
It follows that x"*'=0. A remarkable theorem by Dedkov, however, states that if A

NILPOTENCY PROPERTIES 37

is any finite-dimensional power associative algebra over a field of characteristic not
equal to 2, 3, or 5, having a nil basis, then A is nil [2]. This leads to an efficient test
for nillity: For each basis member x, merely check if x"*'=0.

What is the best way to compute x"*'? If x is an arbitrary vector, then it is most
efficient to compute a power of x by repeated squarings:

xz’xzz’.-.’xzk’-;;

since only about log(n) squarings are required, each taking O(n®) arithmetic
operations. However, if x is a basis element, then it is slightly faster to compute x"*'
using the formula

X" =x(0 x(x(xx))).

Here each multiplication involves a vector with a basis element, an O(n®) operation.
Since there are n such operations, the cost is O(n®), rather than log (n)n’. Finally,
since there are n basis elements to consider, we have Theorem 7.
THEOREM 7. In an n-dimensional power associative algebra over any field having
characteristic not equal to 2, 3, 5 nillity can be tested with O(n*) arithmetic operations.
Recall that an alternative algebra is one that satisfies the identities

(5) (xx)y —x(xy) =0,
(6) (yx)x—y(xx)=0

for all x and y. These algebras form an important generalization of associative algebras.
Although alternative algebras are not in general associative, the subalgebra generated
by any two elements is associative [10]. This implies that alternative algebras are power
associative, and therefore it is meaningful to speak of alternative nil algebras. If A is
an alternative (or, in particular, an associative) finite-dimensional nil algebra, then A
is nilpotent [10]. This property, namely that nil finite-dimensional algebras are nilpotent,
also holds for many other classes of algebras including Jordan algebras over fields of
characteristic not equal to two and others (see [10], [8]).

In associative algebras the concepts of solvable, left nilpotent, and nilpotent, are
obviously equivalent. However, as a matter of note, in alternative rings, the concepts
of nilpotent and left nilpotent are equivalent, but there exist solvable alternative rings
(which cannot be regarded as finite-dimensional algebras) that are not nilpotent [3].

It follows from Theorem 7 that for alternative algebras, Jordan algebras, and the
like, after ruling out a few bad characteristics, testing nilpotency takes O(n*) arithmetic
operations, an improvement over the O(n°) method of Theorem 2.

Unfortunately, when we are presented with an algebra, we do not know that it is
alternative or power associative, and so we cannot necessarily use Dedkov’s result.
The property of alternativity can be checked efficiently since it involves only two
defining identities of fixed size. But power associativity seems hard to check since it
says that for every x and for every k, all associations of k x’s are equal.

Let us therefore reformulate the concept of nil so that its definition does not
depend on power associativity. For any x, define x'")= x and for i=1 define x"*"1=
xx'), We now will call an n-dimensional algebra left nil if for each x € A, we have
x[""1 =0, It is clear that when A is power associative the notion of left nil coincides
with nil.

Assume now that A is any n-dimensional algebra over Q with basis {v;}, i=
1,-- -, n. We wish to decide if A is left nil. Since A may not be power associative, we
cannot rely on Dedkov’s result. The problem, therefore, appears hard. In the remainder
of this section we will demonstrate an efficient Monte Carlo algorithm.

38 I. R. HENTZEL AND D. POKRASS JACOBS

We first consider the identity
(7) x" = x(- - (x(xx)) -+) =0.

This equation holding for all x is equivalent to A being left nil. Now let a,, - - -, a,
be indeterminates and let us write x=Y_, a0, to stand for a generic element in A.
We replace x in (7) by ¥, a,v;, and multiply the expression. Using the structure
constants for A, we can simplify this to an expression of the form Y|, 7,v;. Here each
7; is a degree n+1 polynomial in the variables «,, - -, @,, with each term having
some combination of n+1 «a’s and a coefficient in Q. The algebra A is then left nil if
and only if each polynomial 7; is zero.

Note that the monomials of a’s in each 7; are those we would obtain were
we to simplify, using commutativity and associativity, the multivariate polynomial
(ay+- - -+a,)""". This polynomial has (,%,) distinct terms. Therefore, explicitly con-
structing the polynomials 7; in the manner described above, in order to decide left
nillity, is not efficient. Instead, we describe how each 7; can be shown to be probably zero.

LEMMA 2. Let 7 be a polynomial over Q in n variables, ¢ >0, and let I be a subset
of Q for which |I|= c- deg (7). Then if 7 is not identically zero, the number of elements
in I" which are zeros of T is at most ¢™'|I|".

Proof. See Corollary 1 of [11, p. 702] for the proof. 0

Using the technique of Schwartz [11], we arrive at a probabilistic algorithm for
deciding if a polynomial 7 is identically zero as follows: First choose I to be any set
of elements from Q of cardinality 2 deg (7) =2(n+1). We then select a random n-tuple
y=(y,*,ya)fromIXIXx---xI assigneach y, to a;, and then evaluate a polynomial
7. This procedure is repeated at most N times. If any of the evaluations produces a
nonzero result, then 7 is not identically zero. On the other hand, if all evaluations are
zero, then by Lemma 2, with ¢ =2, r is identically zero with probability at least 1 —2"™.

In our situation, we really are interested in deciding if all n of the 7;’s are identically
zero. Hence we apply the above algorithm to each 7;. After selecting a random n-tuple
y=(1," "+, yY.) we can evaluate 7;(y;, * * -, y,) as follows. Let x =Z;’=, y;v;. Now form
the sequence

x, xP e xlnr

Then 7,(y,,- -+, y,) is the coefficient of v; in x!"*'). This is done up to N times for
each 7;. If any one of the evaluations is nonzero, then (7) fails and the algorithm is
terminated. Otherwise, each 7, is identically zero with probability at least 1—2"".

Now let £ >0 be some fixed small number (say 27*°°). For a given algebra of
dimension n, we choose N >log(n/e). We then test for left nillity in the manner
described above. If no nonzero vector is found for the 7,’s then each 7; is nonzero with
probability at most 2~". The probability, therefore, that at least one of the 7’s is
nonzero is at most n/2". By choice of N this is less than e.

Each of the N evaluations takes n multiplications of n-dimensional vectors, where
each multiplication takes about O(n®) operations. Hence for each 7;, only O(N- n*)
or O(log (n)n*) operations are required. This is done for each 7;, so altogether
O(log (n)n”) operations are required. Finally, this algorithm runs in polynomial time.
The argument is straightforward and uses Lemma 1. Theorem 8 follows.

THEOREM 8. In an n-dimensional algebra over Q left nillity can be decided prob-
abilistically in polynomial time using O(log (n)n>) operations.

4. An NP-complete problem. In this section we briefly consider the complexity of
problems involving algebras described by generators and relations. We assume in this
section our algebras are associative. Let G={a,, - - -, a,} be a finite set of generators.

NILPOTENCY PROPERTIES 39

Let W be a set of finite sequences of elements of G. That is, W consists of (associative)
words on G. We let ASC (G, W) denote the associative algebra generated by G subject
to the relations

(1) For all we W, w=0.

(2) For each i any product containing two a;’s is zero.

It is clear that ASC (G, W) is nilpotent since the product of any n+1 generators must
contain two a;’s for some i. Moreover, ASC (G, W) is a finite-dimensional algebra
since it is spanned by all words of length n+1 or less. Let G* denote the set of strings
over G. Now consider the following decision problem, which we call ASC:

INSTANCE. A finite set G, a finite set of relations W < G* as above, and a positive
integer k.

QUESTION. Is the index of nilpotency of ASC (G, W) greater than k?

THEOREM 9. ASC is NP-complete.

Proof. 1tis clear that ASC is in NP since answering yes requires finding a sequence
of k+1 distinct generators, no subsequence of which is zero by the relations imposed
by W. Recall that the problem DIRECTED HAMILTONIAN PATH asks, for a given
directed graph, whether there exists a path which visits each vertex exactly once. This
problem is NP-complete [5]. We now transform DIRECTED HAMILTONIAN PATH
to ASC. Let D =(V, E) be a directed graph with n vertices. We map this to an instance
of ASCin which G=V, W ={a,q; | (aa;) isnote E}, and k = n. It is then straightforward
to verify that the algebra has index of nilpotency greater than k if and only if the
directed graph has a Hamiltonian path. 0

5. Unsolvability and local left nilpotency. In recursion theory the arithmetic
hierarchy is defined as follows. Let 3, be the class of all recursive subsets of natural
numbers. For n=1, X, is the class of all sets that are A-recursively enumerable for
some A€ X, ;. That is, a set B is a member of X, if there is an oracle program that
can enumerate all members of B by making queries of the form “ne A?,” for some
set Ae X, ,. For each n we also define the class of complements IT, ={N —A|A€X,}.
(See [1] or [12].)

Recall that a reducibility is a transitive reflexive binary relation. An important
example is 1-reducibility, a relation on the class of subsets of the natural numbers. If
A and B are sets of natural numbers we say A is 1-reducible to B (written A =, B) if
there exists a 1-1 recursive (i.e., computable) function f on N such that ne A if and
only if f(n)e B. If T is a class of sets we say that B is 1-complete for T" if BeT" and
A =, B for all AeT'. The purpose of this section is to describe a 1-complete set for
the class IT, and explain its connection to nilpotence.

For the remainder of this section we assume that F is a fixed field, either finite or
countably infinite. If F is infinite we assume that its elements and operations can be
described effectively. That is, we assume that there is a 1-1 correspondence that encodes
the elements of F with the natural numbers, and there exists an algorithm (on the
encoded elements) to compute each field operation. Clearly, a finite extension of Q
has this property. From here on, we shall identify a member of F with the number
that encodes it.

Next, let g be any 1-1 onto recursive function from N to the set of all finite
sequences in F:

g(m)=(a09”.’an)’ aiGE

Also let {x, y) be any recursive 1-1 onto map from N X N to N for which x, y =(x, y).
(For example, (x, y)=2"(2y +1)—1 will do.) The maps g and (x, y) are thought to be
fixed.

40 I. R. HENTZEL AND D. POKRASS JACOBS

Let us now fix a countably infinite set of indeterminates V={v;}, i=0,1, -+, to
serve as a basis for the vector space A over F of all linear combinations of finitely
many v;’s. Let f be a partial recursive function on N. Then f defines a partial function
from Vx V to A in the following way. For each i and j for which f((i, j)) is defined
we may let

(8) vy = Y

k=1
where g(f({i,j))) = (aq, - * +, @,). This mapping is not necessarily 1-1. For example, if
g(m)=(e, B), g(my)=(a, B,0), (i1, j1)=my, (i, jo)=m;,, then v,v, =v,,v,. If f is
recursive, this defines a multiplication table for an infinite-dimensional algebra with
basis V.

We call an algebra with basis V computable if it can be obtained from some
recursive function f in the above manner. Note that for multiplication to be defined
on all pairs of basis elements it is necessary that f be recursive and not just partial
recursive. We shall write A, for this algebra.

Now let ¢y, ¢, - - be a standard numbering of the partial recursive functions
on N. (Each ¢; is the partial recursive function computed by the ith Turing machine.)
We write ¢,(j)} to mean ¢,(j) is undefined, and we write ¢,(j){ to mean it is defined.
Also, we write ¢, ,;(j)| to mean that the nth Turing machine computes ¢,(j) in less
than or equal to i steps.

An algebra is called locally left nilpotent (lln) if every finitely generated subalgebra
is left nilpotent. That is, for each subalgebra B generated by a finite set, there exists
a k, depending on B, such that x;(x,(- « - (xx_1x;) - * -)) =0 for all x; € B. We now define

LLN ={n|¢, is recursive and A, is lln}.

Our goal is to classify LLN in terms of the arithmetic hierarchy.

Let W(X,, X5, -, X,) be a nonassociative word involving ¢ variables, and let
f= ¢, be a partial recursive function. Since f may not be recursive, we must clarify
what we mean by the product of v;’s computed by f:

(9) W(U;l, viza Y vi,)-

The word (9) is expanded in the usual way by starting with the innermost pairs of v;’s
and applying equation (8). Whenever a product

T oawt Y By

i=0 j=0

must be computed, (8) is only applied to numbers (i, j), a; # 0 and B; # 0. This procedure
defines a partial mapping that we call the product computed by f. We now formally
define the number of computational steps taken by f to compute the product (9). If
deg (W) =1, then f requires zero steps to compute (9). If deg (W) =2 then (9) is of
the form v; v;,, and the number of steps f requires is the number of steps the nth Turing
machine requires to compute ¢, ((i;, i,)). For deg (W) > 2, we write (9) as

R(vi,’ vl‘za Y vi,)S(vila viz’ T, vi, .

Assume R(v;, v,, ", v;) is defined and equal to Y;_, vy, and S(v;, v, * *, v;) is
defined and equal to Z;;O B;v;. Then the number of steps required by f to compute (9)
is the sum of the number of steps to compute R(v;, v;,," -, v;,) plus the number of
steps to compute S(v;, v, * -+, v;,) plus the number of steps to compute v;v; for all
a; #0 and B; #0.

NILPOTENCY PROPERTIES 41

Given these formal definitions we now define a predicate P(n, k, m)on NX Nx N
as follows.

There is some f, 2=t=m, such that each right associated product
v, (v,(+ - - (vi,_,v;,) - -), where all i; =k, is (1) computed by ¢, in at most m steps
and (2) equals zero.

Note that since there are only a finite number of such left associated products to check,
P(n, k, m) is a recursive predicate.

LEMMA 3. LLN = {n|for all k, there exists an m, such that P(n, k, m)}.

Proof. Let ne LLN and set f=¢,. Then f is recursive and A, is locally left
nilpotent. Let k be given. Let B< A, be the subalgebra generated by vy, - - -, v. By
assumption, B is left nilpotent. This implies B!'1={0} for some . Consider all left
associated products having ¢ factors from {v,, - - -, v }. Each can be computed by f
in a finite number of steps. Define m to be the largest of all such numbers. Then
P(n, k, m) is true.

Conversely, assume n is a member of the right side of the equality. We claim
n e LLN. First note that f= ¢, is recursive: for any k we may find i and j such that
k=(i,j). By assumption, there exists an m such that P(k, m,n). Hence
v(vi(+ - - (viyy) * - +)), since i, j = k. This implies f(k)| . Second, we claim Ay is lln. For
let B< A, be the subalgebra generated by by, - - -, b,. Each b is a linear combination
of finitely many v;’s. Let k be the largest such subscript. Let B; be generated by
Vo, **, V. Then B< B,. Since P(k, m, n) for some m, B, is lln. Hence B is lln
also. 0

THEOREM 10. LLN is 1-complete for II,.

Proof. To prove this it suffices to show (1) LLN €Il,, and (2) A =, LLN for some
set A already known to be 1-complete for IT,. By a well-known characterization of the
arithmetic hierarchy (see [1]), a set is in IT, if it can be written in the form

{n|for all y, there exists a z, P(n, y, z)}

where P is a recursive predicate. By Lemma 3, LLN€II,. Now let TOT={n|¢, is
recursive}. It is known that TOT is 1-complete for IT,. We will show TOT =, LLN,
which will finish the proof. For each ne N define the algebra R, so that for all i, j

_{0 if ¢n,j(i)\La
viY; =

Vitj otherwise.

That is, vv; is zero if the nth Turing machine halts, within j steps, with input i.
Otherwise, vv; is v;.;. Clearly, each R, is a computable algebra. It is also clear we
have a 1-1 recursive map n > F(n) such that foreach ne N, R, = A, . It now suffices
to show that n € TOT if and only if F(n)e LLN (i.e., R, is locally left nilpotent).

Assume first that n € TOT so that ¢, is recursive. Let {x;} be a finite set of elements
from R,. We claim this set generates a left nilpotent subalgebra. Each x; is a finite
linear combination of v;’s. Let s be the greatest subscript in all such linear combinations.
Then it suffices to show that the subalgebra generated by {v,, - * -, v} is left nilpotent.
Since ¢, is recursive we may choose ¢ large enough so that

¢n,t(0)la ¢n,t(l)\l/s Y d’n,t(s)l"

Now consider any left associated product of ¢+1 elements among {v,, * - -, v,}, say
v, (v -+ - (v,(v;) - - +). If the right factor is not zero the product becomes v; ,,vx Where
k =Z;=1 i;=t and i+, =s. Then ¢,,(i+1)! and so the final product is zero. This shows
R, is locally left nilpotent.

42 1. R. HENTZEL AND D. POKRASS JACOBS

Conversely, assume n is not a member of TOT (i.e., ¢, is not recursive). By
assumption on n, there exists an i such that ¢, ;(i)] for all j. Then any left associated
product in R, of t v;’s is v.;. Hence, R, is not locally left nilpotent. O

6. Summary and further work. The theme of this paper was to consider one idea
from nonassociative algebra, nilpotency, and study it with various computational tools.
The ideas from §§ 2 and 3 suggest several questions. For example, although we were
able to decide nilpotency in polynomial time, we were not able to decide solvability
in polynomial time, at least for finite-dimensional algebras over Q. Can this be done?
If not, for what classes of algebras can it be done? Of course, in the case of associative,
alternative, Jordan, etc., finite dimensionality and solvability imply nilpotency, and so
the problem is solved. But a class of algebras yielding a nontrivial algorithm would
be of interest.

In § 3 we noted that in some sense the power of Theorem 7 is wasted unless there
is an efficient way to recognize the property of power associativity. It is easy to recognize
certain properties that imply power associativity (associativity, alternativity, etc.), but
a deeper investigation of power associativity is warranted.

Which of the decision problems in P are also in NC?

The Monte Carlo technique described in § 3 seems powerful enough to handle
more general problems. For example, consider the problem in which we are given an
algebra A over Q, and an arbitrary nonassociative polynomial f: we wish to decide if
f is identically zero in A.

The material in § 5 suggests looking for other unsolvable problems (sets) from
nonassociative algebra that are complete for various classes of the arithmetic hierarchy.
In particular, it would be nice to identify a problem from nonassociative algebra that
is 1-complete for the class of recursively enumerable sets (that is, recursively isomorphic
to the halting problem), perhaps something akin to the word problem from group theory.

Finally, a main focus of our work is on the following problem. Let us fix a variety
V of nonassociative algebras over a field F, defined by a set of defining identities. For
example, V might be the class of alternative algebras over F defined by identities (5)
and (6). For each nonassociative polynomial f we wish to decide if f is identically
zero for each algebra in V. Assuming that F can be described effectively, this problem
is decidable. If the nonassociative polynomials are encoded in a reasonable (i.e., sparse)
way, however, there does not seem to be any way to solve the problem with a polynomial
amount of space. Despite this apparent intractability, much of our work has been to
look for better ways to decide if a nonassociative polynomial f is an identity. Here
the degree of f is usually small, say at most 10. This problem is quite rich in structure,
and offers good opportunity to use many interesting algorithmic and mathematical
tools including group representation theory, graph theory, and dynamic programming

(see [6], [7]).

REFERENCES

[1] M. DAvis AND E. WEYUKER, Computability, Complexity, and Languages, Academic Press, New York,
1983.

[2] A. 1. DEDKOV, Power-associative algebras with a nil basis, Algebra i Logika, 24 (1985), pp. 267-277.

[3] G. V. DOROFEYEYV, An example of a solvable but not nilpotent alternative ring, Uspekhi Mat. Nauk, 15
(1960), pp. 147-150. (In Russian.)

[4] K. FRIEDL AND L. RONYAI, Polynomial time solutions of some problems in computational algebra, in
Proc. 17th Annual ACM Symposium on Theory of Computing, Providence, RI, 1985.

[5] M. GAREY AND D. JOHNSON, Computers and Intractability—A Guide to the Theory of NP-Complete-
ness, W. H. Freeman, New York, 1979.

NILPOTENCY PROPERTIES 43

[6] I. R. HENTZEL AND D. J. POKRASS, A computational and graph theoretic approach to nonassociative
algebras, Cong. Numer., 62 (1988), pp. 241-258.
, Verification of non-identities in algebras, in Proc. 1988 International Symposium on Symbolic
and Algebraic Computation, Springer-Verlag, Berlin, New York, 1989.
[8] D.J. POKRASS AND D.J. RODABAUGH, On the nilpotency of generalized alternative algebras, J. Algebra,
49 (1977), pp. 191-205.
[9] L. RoNYAI, Simple algebras are difficult, in Proc. 19th Annual ACM Symposium on Theory of
Computing, New York, 1987.
[10] R. SCHAFER, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966.
[11] J. T. SCHWARTZ, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput.
Mach., 27 (1980), pp. 701-717.
[12] R. SOARE, Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, New York, 1987.

(71

SIAM J. COMPUT. © 1990 Society: for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 44-70, February 1990 003

THE COMPLEXITY OF VERY SIMPLE BOOLEAN FORMULAS
WITH APPLICATIONS*

H. B. HUNT IIIt# AND R. E. STEARNST§

Abstract. The concepts of SAT-hardness and SAT-completeness modulo npolylogn time and linear size
reducibility, denoted by SAT-hard (npolylogn, n) and SAT-complete (npolylogn, n), respectively, are intro-
duced. Regardless of whether P=NP or P # NP, it is shown that intuitively

Each SAT-hard (npolylogn, n) problem requires essentially at least as much deterministic time as,
and
Each SAT-complete (npolylogn, n) problem requires essentially the same deterministic time as

the satisfiability problem for 3CNF formulas.

It is proved that the =, satisfiability, tautology, unique satisfiability, equivalence, and minimization
problems are already SAT-complete (npolylogn, n), for very simple Boolean formulas and for very simple
systems of Boolean equations. These completeness results are used to characterize the deterministic time
complexities of a number of problems for lattices, propositional calculi, combinatorial circuits, finite fields,
rings Z, (k=2), binary decision diagrams, and monadic single variable program schemes. A number of
these hardness results are “best” possible.

Key words. complexity, NP-completeness, SAT-completeness, decision problems, Boolean formulas,
finite fields, modular arithmetic, binary decision diagrams, program schemes, finite and distributive lattices,
fault detection

AMS(MOS) subject classifications. 03G99, 06B99, 06D99, 68Q15, 68M15, 94C10

1. Introduction. We study the deterministic time complexity of computational
problems for very simple Boolean formulas and for very simple systems of Boolean
equations. In particular, we study the fundamental problems of =, satisfiability,
tautology, unique satisfiability, equlvalence and minimization. There are two reasons
for this study.

First, the problem instances we cons1der are so simple that they can be expected
to be encountered in any application area. In contrast, a result derived from complex
problem instances might be dismissed in some application areas on the grounds that
the formula instances used in the hardness proof are not of the form encountered in
practice. In general, proofs obtained from simple instances are better evidence of
hardness than proofs obtained from general instances.

Second, hardness results for them are more easily extended to other problems.
For example, we obtain results for very simple monotone formulas (formulas without
not) and these results easily generalize to many lattices including all nondegenerate
finite lattices.

Although our basic technique is to find reductions from the Satisfiability Problem,
we will derive results that are sharper than NP-completeness. The disadvantage of

* Received by the editors April 18, 1988; accepted for publication (in revised form) April 4, 1989. A
preliminary version of this paper was presented at the Third Annual Symposium on Theoretical Aspects of
Computer Science, Paris, Orsay, France. The symposium was supported by the Association Frangaise des
Sciences et Techniques de I'Information, de ’Organisation et des Syst¢émes (AFCET) and the Gesellschaft
fir Inforrhatik (GI).

+ Computer Science Department, State University of New York, Albany, New York 12222.

1 The research of this author was supported in part by National Science Foundation grants DCR
84-03014 and DCR 86-03184.

§ The research of the author was supported in part by National Science Foundation grant DCR 83-03932.

44

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 45

merely showing NP-completeness is that, for all £ > 0, there are NP-complete problems
that can be solved in time 2°""). Even 2™ algorithms should be considered practical,
even though “NP-complete” has become associated with ‘“‘intractable.”

Unless explicitly stated otherwise, a Boolean formula is a well-formed formula
made up of parentheses, variables, and the operators and, or, and not. A monotone
Boolean formula is a Boolean formula without occurrences of not. A literal is a variable
or a ¢complemented variable. A 3CNF formula is the conjunction (ands) of clauses
where each clause is the disjunction (ors) of at most three literals. 3DNF formulas are
defined analogously.

Henceforth, we abbreviate both the satisfiability problem for 3CNF formulas and
the set of satisfiable 3CNF formulas by SAT. The sharper technique we use here is to
use reductions from SAT that are npolylogn in time and linear in size (output is linear
in input). This leads us to the concepts of SAT-hardness (npolylogn, n) and SAT-
completeness (npolylogn, n) introduced in §2. In §2 we see that “SAT-complete
(npolylogn, n)”” means ‘“‘takes essentially the same deterministic time as the satisfiability
problem for 3CNF formulas.”

Our key complexity result obtained here concerns the set of formula pairs (F, G)
satisfying F = G, where F and G are such that

(1) No variable occurs more than once in F or more than once in G,

(2) F is a monotone CNF formula,

(3) G is a disjunction of monotone CNF formulas.

We show that this set of formula pairs has essentially the same deterministic time
complexity as SAT (i.e., is SAT-complete (npolylogn, n)). As corollaries of this basic
result, we characterize the deterministic time complexity of a number of basic problems
for all finite nondegenerate lattices. Additional applications are presented to logic,
circuit analysis and testing, binary decision diagrams, and monadic single variable
program schemes. As one corollary, we prove that the recognition of the set of uniquely
satisfiable 3CNF formulas requires “‘essentially the same deterministic time as” SAT.
This problem has been extensively studied in the literature (see [30]).

A brief outline of this paper follows. In § 2 we introduce the concepts of npolylogn
time and linear size reducibility, SAT-hardness (npolylogn, n), and SAT-complete-
ness (npolylogn, n). We also show that two important reduction procedures can be
performed on npolylogn time and linear size bounded Turing machines. In § 3 we
present our main deterministic time complexity results for the =, satisfiability,
tautology, unique satisfiability, equivalence, and minimization problems for very simple
Boolean equations and for very simple systems of Boolean equations. Theorem 3.3
and Corollary 3.4 are of special importance to the remainder of the paper. In § 4 we
use the results and techniques of §§2 and 3 to characterize the deterministic time
complexities of a number of basic problems (see Fig. 1 in § 4.1) for each nondegenerate
finite lattice. Additional applications are presented to logic and to circuit analysis and
testing. In § 5 we use the results and techniques of §§2 and 3 to characterize the
deterministic time complexities of a number of basic problems for each finite field,
each ring Z, (k=2), binary decision diagrams, and monadic program schemes.

The remainder of this section consists of definitions, notation, and basic results
about complexity theory, lattices, and Boolean algebras used in this paper. We assume
that the reader is familiar with the complexity classes P, NP, and coNP, polynomial
reduciblity, NP-hardness and NP-completeness, and coNP-hardness and NP-complete-
ness; otherwise, see [18]. We denote the set of natural numbers by N. Throughout this
paper by “Turing machine,” we mean ‘“multiple-tape Turing machine.”

The following problems for Boolean formulas are considered:

46 H. B. HUNT I1II AND R. E. STEARNS

(1) The =problem, i.e., the problem of determining, for Boolean formulas F and
G, if F=G, i.e., if G equals 1 whenever F equals 1.

(2) The satisfiability problem, i.e., the problem of determining if a Boolean formula
F is satisfiable.

(3) The tautology problem, i.e., the problem of determining if a Boolean formula
F is a tautology.

(4) The unique satisfiability problem, i.e., the problem of determining, for a Boolean
formula F, if there exists exactly one assignment v of values from {0, 1} to the variables
of F such that F takes on the value 1 under v.

(5) The equivalence problem, i.e., the problem of determining, for Boolean formulas
F and G, if F and G denote the same function.

(6) The minimization problem, i.e., the problem of finding, given a Boolean formula
F, an equivalent Boolean formula G such that the number of occurrences of symbols
in G is minimal.

THeOREM 1.1 [15], [18]. The set of tautological 3DNF formulas is coNP-complete;
and the set of satisfiable 3CNF formulas is NP-complete.

DEFINITION 1.2. An algebraic structure S is a nonempty set S, called the domain
of the structure, together with a nonempty set of operations of various arities on S. S
is said to be nondegenerate if |S|=2. S is said to be finite if |S| <o, and in addition
if S has only finitely many operations, each of finite arity. 0

DEerFINITION 1.3. A lattice S=(S, v, A) is an algebraic structure with domain S
such that v and A are commutative, associative, and idempotent binary operations on
S suchthat, forallx, ye S, x v (x A y) =x A (x vy) =x. A distributive lattice S= (S, v, A)
is a lattice such that, for all x, y, ze S, xv(yaz)=(xvy)a(xvz) and xA(yvz)=
(xAy)v(xaz). Alattice S=(S, v, A) is finite if |S| <co.

Let S=(S, v, A) be a lattice. Let = be the partial order on S defined by x =y if
and only if x vy =y. An element a of S such that a=b for all be S is said to be the
minimal element on S and is denoted by 0. An element a of S such that b= a for all
b e S is said to be the maximal element of S and is denoted by 1. Let S=(S, v, A) be
a lattice with minimal element 0. An element b of S such that 0<<b on S but there
exists no c € S for which 0 < ¢ < b on S is said to be an atom of s. A lattice S=(S, v, A)
is said to be a finite depth lattice if there exists k€ N such that

x<--+<x,<x; onSimplies/=k. u

A Boolean Algebra has operators A, v, and ~ and constants 0 and 1 where A, v,
and ~, behave as set intersection, union, and complement, respectively, 0 behaves as
the empty set, and 1 behaves like the universal set. Formal axioms can be found in
[1], [7], and [43]. We let BOOLE be the two-element Boolean algebra of everyday
logic. We let BIN be the two-element distributive lattice, namely, BOOLE without the
negation (or complement) operator.

THeEOREM 1.4 [7]. (1) Let L=(S, v, A) be a nondegenerate distributive lattice. Let
F and G be formulas on L involving only variables, parentheses, v, and A. Then, F=G
on L if and only if F= G on BIN; and F = G on L if and only if F= G on BIN.

(2) Let L=(S, v, A,~,0,1) be a nondegenerate Boolean algebra. Let F and G be
formulas on L involving only variables, parentheses, v, n, ~, 0, and 1. Then, F= G on
L if and only if F= G on BOOLE; and F= G on L if and only if F=G on BOOLE.

The importance of Theorem 1.4 is that hardness results concerning formulas
on BIN immediately generalize to arbitrary nondegenerate distributive lattices and
results about BOOLE immediately generalize to arbitrary Boolean Algebras.

In general, formulas over an algebraic structure on domain S will involve variables,
operators, and some notation for elements in S. We generally focus on *““constant-free”

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 47

formulas involving only variables and operators. The distinction between operators
and constants can be blurred by the presence of zero-ary operators (such as 0 and 1
in Boolean algebras). We call formulas with these zero-ary operators “’constant-free’
since they can be interpreted as formulas independent of the domain.

Restricting ourselves to constant-free formulas does not weaken hardness results
since we certainly expect them to be included among formulas encountered in practice.
We seek results on constant-free formulas that apply to the class of all algebras with
the specified operators. Classes of formulas with domain specific constants can some-
times be harder than constant-free formulas due to the complexity of manipulating
constants. The complexity of manipulating constants (i.e., the complexity of arithmetic)
is not a topic of this paper.

In the case of finite algebraic structures S, the domain of the structure can be
specified by giving distinct names to its elements. The complexity of arithmetic on
such a structure S is not an issue, since S’s operators can be specified by tables and
have constant cost.

DEeFINITION 1.5. Let S be an algebraic structure with domain S. By a representation
of S, we mean a set of | S| distinct constant symbols denoting the elements of S. |

The algebraic structures we use here are Boolean algebras, lattices, logics, and
rings, which have standard infix notation for formulas. In general, the results apply
to any of the easily parsed formula notations. By the size of a formula F denoted by
| F|l, we mean the number of occurrences of symbols in F, where each occurrence of
a variable, operator, constant, or parenthesis is treated as a single occurrence. For
example, ||(x;35 OF X35,)|| = 5. The size of an equation or a system of equations is defined
analogously. This is the natural measure since variables and constants are the objects
on which reductions are defined. When considering the time of a reduction on a Turing
machine, however, we will take into account the fact that the infinite variable set must
actually be represented by strings on some finite alphabet.

We like to measure time complexity as a function of input size rather than input
length. When doing this, we use the symbol ||w|| instead of the traditional n. Thus we
use Le DTIME (F(||w|)) to mean the time required to test string w for membership
in L is F(||w]||) or fewer Turing machine operations. It is assumed that a reasonably
efficient encoding of variables into strings is used when a formula is presented to a
Turing machine. Specifically, we assume the length of the Turing machine input is at
worst O(||w| log || wl]).

Let F be a formula on an algebraic structure S with domain S. Let v be an
assignment of values from S to the variables of F. We denote the value taken on by
F under v by v[F].

2. Preliminary results. Here we present our hardness concepts and prove their
implications for complexity. The objective is to establish stronger relationships than
NP-hardness. We close the section with efficient time and size bounded Turing machine
algorithms for two basic transformations that serve as subroutines in later sections.

In what follows, let £ and A be finite nonempty alphabets; and let L and M be
languages over X and over A, respectively.

DerINITION 2.1. We say that L is npolylogn time and linear size reducible to M
if there exists an integer k = 1 and a function f: 2* -» A* computable by an O(n(log n)*)
time-bounded deterministic multiple tape Turing machine such that:

(i) For all xe2*, xe L if and only if f(x)e M; and

(ii) There exists ¢> 0 such that, for all xe=*, || f(x)||=c- ||x]|.]

DerFINITION 2.2. We say that L is SAT-hard (npolylogn, n), read ““L is SAT-hard
modulo npolylogn time and linear size reducibility,” if SAT is npolylogn time and

48 H. B. HUNT III AND R. E. STEARNS

linear size reducible to L (in which case L is also NP-hard) or unSAT (the set of
unsatisfiable 3CNF formulas) is npolylogn time and linear size reducible to L (in
which case L is coNP-hard). We say that L is SAT-complete (npolylogn, n), read ‘L
is sat complete modulo npolylogn time and linear size reducibility,” if L is SAT-
hard (npolylogn, n), and L is npolylogn time and linear size reducible to either SAT
or unSAT. 0

We will use the term Turing-SAT-complete (npolylogn, n) if the above conditions
hold for Turing reductions instead of many-one reductions, where npolylogn is the
time spent to create a bounded number of problem instances of linear size.

The basic deterministic time hardness properties of SAT-hard and SAT-
complete (npolylogn, n) languages are summarized in Proposition 2.3. Part (1) of the
proposition applies if P=NP and says that, in the case of SAT-completeness, the
complexity of L and SAT are bounded by the same polynomials. Part (2) applies if
the NP-complete problems take exponential time and says, that in the case of SAT-
completeness, the complexities of L and SAT have similar polynomials in their
exponents. Thus, intuitively, this proposition says that:

(1) If L is SAT-hard (npolylogn, n), then L requires “essentially at least as much
deterministic time as SAT,” and

(2) If L is SAT-complete (npolylogn, n), then L requires “essentially the same
deterministic time as SAT.”

We note that each SAT-hard (npolylogn, n) language is either NP- or coNP-hard, and
that each SAT-complete (npolylogn, n) language is either NP- or coNP-complete.

ProrosITION 2.3. Let L be a language and let T(n) be any increasing function such
that, for all k, T(n)= n(log n)* for almost all n:

(1) If L is SAT-hard (npolylogn,n) and LeDtime (T(|w]|)), then SATe
Dtime(T(c||wl|)) for some constant c.

(2) If L is SAT-complete (npolylogn, n), then Le Dtime (T(c,||w||)) for some ¢,
if and only if SAT e Dtime (T(c,||w|)) for some c,.

(Statement 2 also applies to Turing-SAT-complete (npolylogn, n) problems.)

Proof. If L can be done in time T(||w||), then the reduction permits SAT to be
done in time O(npolylogn)+ T(O(n)), which is O(T(c||w|)) for some constant c. This
proves Part (1). If L is complete, there is a corresponding reduction back to SAT and
Part (2) is proved. These remarks apply equally well to Turing reductions. 0

If, as we suspect, SAT requires deterministic time 290" for some k, the SAT-
hard(npolylogn, n) problems will also take at least 290 time. Complete problems
will have the property that L € Dtime (20("‘”"k)) if and only if SAT € Dtime (2“"‘”"”).
If P=NP and SAT only requires time O(n*), then the hard problems will also require
time O(n*) and complete problems will have the property that Le Dtime (O(||w|*))
if and only if SAT e Dtime (O(||w]|*)).

The next proposition is used extensively in this paper.

ProPOSIITION 2.4. Let @ be any nonempty finite set of Boolean operators. Then
there exists a constant ¢>0 and a deterministic O(npolylogn) time-bounded Turing
machine T such that, when given a system of Boolean equations S involving operators
from @ and the constants 0 and 1 as input, T outputs a 3CNF formula Fg such that

(1) ||Fs|=c-|Sll, and

(2) The number of satisfying assignments of Fs equals the number of satisfying
assignments of S.

Proof. This reduction can be done by standard techniques using the principles
from [6] and standard compiling techniques. We outline the reduction as a sequence
of steps with the expectation that the reader can verify that each step can be carried

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 49

out by a Turing machine in the required time and satisfying conditions (1) and (2) of
the proposition. In practice, the ideas can be fit into a one-pass algorithm.

Step 1. The system S can be thought of as a list of formula pairs where the two
formulas in each pair are to be made equal. Replace each operator occurrence @ in
the input formulas with a pair (@, v), where v is a variable distinct from the input
variables and the other new variables associated with other operator occurrences.

Step 2. Translate the string into a sequence of equations where the left-hand
formula has no operators and the right-hand formula has at most one operator. For
each pair (0, v) in the input to this step, there will be an equation v =0(x; - - - x;)
where @ is k-ary and x; - - - X, are variables or constants representing the operands
associated with the occurrence of ® in the input. For each formula pair of S, the output
will have equation x =y where x and y are the variables (or constants) representing
the two formulas.

Step 3. For each equation, there is a 3CNF formula that expresses the same
Boolean relationship as the equation. The output of the procedure is the conjunction
of all these formulas.

Because O is a finite set of Boolean operators, we are dealing with a finite set of
transformations of individual equations into 3CNF. Therefore this last step is linear
size bounded. 0

The next proposition asserts the existence of a subroutine for marking variable
occurrence quickly on a Turing machine.

PrOPOSITION 2.5. There is a deterministic npolylogn time-bound Turing machine
that, given a sequence F of symbols and variables as input, replaces each variable x by
a pair (x, k) where k is the integer such that (x, k) is the replacement for the kth occurrence
of x in F.

Proof. The set of integers {1,2, - - -, n}, when denoted by their binary numerals,
can be sorted deterministically in npolylogn time on a Turing machine using a standard
merge-sort algorithm. The Turing machine of the statement of the proposition uses
such an npolylogn time sorting algorithm as a subroutine. Let k be the number of
variable occurrences in F and let the ith occurrence be x;. This machine, given F as
input, executes the following five steps:

Step 1. Extract the string F;=(x;,1) - - - (x;,, k) from F.

Step 2. Sort the pairs in F; according to the index of these variables (and preserving
the original order among occurrences of the same variable). Call the result F,.

Step 3. Make each pair (x, i) of F, into a triple (x, i, /) where (x, i) is the Ith
occurrence of xin F,. This can be done in npolylogn time because Step 2 has made
the occurrences of x adjacent. Call the result F;.

Step 4. Sort the triples in F; according to the second component. This restores
the variable occurrence to the original order of F. Call this result F,.

Step 5. Take the triples from F, and attach the third component to the correspond-
ing occurrence in F. This is the desired output. 0

We note that, after executing Step 2 of the algorithm immediately above, the
Turing machine of the proof can be modified to output in npolylogn time and in order
of increasing variable subscript both the variables of F and the numbers of times they
occur in F.

3. Hard problems for very simple formulas and systems of equations. We study the
deterministic time complexities of the =, satisfiability, unique satisfiability, tautology,
equivalence, and minimization problems for Boolean formulas and systems of Boolean
equations. More specifically, we describe very simple formulas and systems for which

50 H. B. HUNT III AND R. E. STEARNS

these problems are hard. In each case, the results are on the boundary of NP in that
the obvious further simplifications result in problems in P. Some of the results, most
notably Theorem 3.3, say that two “‘easy problems’ can be combined in simple ways
to get problems that are “hard as they can be.”

In the first theorem, the satisfiability problem for 3CNF formulas with =3
repetitions per variable is considered. The NP-hardness of this problem is known and
is mentioned in [18]. To put this hard problem into the framework of SAT-complete-
ness (npolylogn, n), we must show that reductions exist with the required time and
size bound. No reduction is cited in [18].

THEOREM 3.1. The Satisfiability Problem is SAT-complete (npolylogn, n) for CNF
formulas with =3 literals per clause and =3 repetitions per variable. The Tautology
Problem is SAT-complete (npolylogn, n) for DNF formulas with =3 literals per term
and =3 repetititions per variable.

Proof. To verify that these two problems are SAT-hard (npolylogn, n), it suffices
by duality to give an npolylogn time and linear size reduction from the 3SAT to 3SAT
for CNF formulas with =3 repetitions per variable. The following reduction can be
used to reduce any Boolean formula f to a Boolean formula f, such that

(a) No variable occurs more than three times in f,, and

(b) fis in SAT if and only if f, is in SAT.

Let x,, - -+, x, be the variables occurring more than one time in f. Let i;,- - -, i, be
the number of occurrences of x;, - - -, x,,, respectively,in f For1=j=nand 1=k=i,
let the variables x;, be distinct variables. Let f;, F, and f, be the Boolean formulas
defined as follows:

(i) fi is the CNF Boolean formula that results from f by replacing, for 1=j=n
and 1=k =i, the kth occurrence to the variable x; in f by the variable x;,. Variables
appear in f; only once.

(ii) For 1=j=n, let g;=t;, and- - - and t;; where t;; =(x;, or (not x;,.,)) for
k<i; and t;; =(X,; or (not x;,)). Formula g; is true if and only if each L is true,
which can happen if and only if all the variables with first subscript j have the same
value. These variables appears appear in g; only twice.

(iii) Let F be the CNF formula g, and g, and - - - and g,. Each variable appears
in F two times.

(iv) f5 is the Boolean formula (F and f;).

The formula F is true if and only if, for all assignments v of values from {0, 1},
v[x;;1=v[x;] for all i, j, k. Thus, it is easily seen that the formula f, satisfies the
assertions a and b immediately above. Clearly, || 5| = | F|+ | fill +3 = O(|f)- Also
clearly when f is a CNF formula, so is f,. Finally, by using the deterministic npolylogn
time-bounded Turing machine of Proposition 2.5 as a subroutine, it is easy to see that
the reduction can be carried out on a deterministic npolylogn time-bounded Turing
machine. 0

We note that the reduction of the proof of Theorem 3.1 is parsimonious, i.e.,
preserves the number of satisfying assignments.

There are two obvious ways the satisfiability problem of Theorem 3.1 can be
simplified. One is to allow only two literals per clause and the other is to restrict
variables to at most two occurrences. By the results of Cook [15] and Tovey [51]
respectively, both these problems are in P. The next result shows that we can get hard
problems with only two repetitions if we consider formulas more complex than CNF.
However, we do not need to go beyond the conjunction of DNF formulas to get
problems that are as hard as they can be.

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 51

THEOREM 3.2. Consider the set of Boolean formulas f such that

(i) fis a conjunction of DNF formulas:

(ii) Each variable of f occurs exactly once complemented and once uncomplemented.
The satisfiability problem for formulas in this set is SAT-complete (npolylogn, n) and
NP-hard.

Proof. Let f be a CNF formula with =3 literals per clause and =3 repetitions per
variable. Formula f can be reduced to a simpler problem if some variable appears
only uncomplemented. Just replace the variable by the constant 1 and simplify. A
similar simplification can be done if a variable appears only complemented. Therefore,
without loss of generality, we may further assume the following:

(1) Each variable of f appears both complemented and uncomplemented.

(2) No variable of f occurs twice complemented (by replacing a variable by its
complement a varaible that appears twice complemented and hence once uncomple-
mented can be converted into a once complemented variable).

Let x,,- - -, x; be the variables of f that occur three times in f. For 1=j=k, let y;,
and y;, be distinct variables. Let f' be the Boolean formula that results from f by
replacing, for 1=j=k,

The first uncomplemented occurrence of x; in f by y;,, the second uncomplemented

occurrence of x; in f by y;,, and the occurrence of X; in f by y;, and y;,.

Under this transformation, the clauses of f become DNF formulas and f' is the
conjunction of DNF formulas. Thus condition (i) is satisfied and it is easy to see that
(ii) is also satisfied. Also, clearly ||f'|| = O(||f]]). We claim the following:

(3.2.1) f is satisfiable if and only if f' is satisfiable.

(3.2.2) f'1is constructible from f on a deterministic npolylogn time-bounded Turing
machine.

The correctness of claims (3.2.1) and (3.2.2) implies the theorem.

It is obvious that a satisfying assignment for f can be made into a satisfying
assignment for f’. Therefore, to prove the correctness of claim (3.2.1), it suffices to
show the following:

If there exists an assignment v of values from {0, 1} to the variables of f’ such
that o[f']=1 and such that v[y;;]# v[y;,] for some j with 1=j=k, then there
exists an assignment w of values from {0, 1} to the variables of f’ such that
w[f']=1and, for 1=j=k, wly;]=w[y»].

For each such assignment v, let w be the assignment that is the same as v accept that,
for 1=j=k, if v[y;;]# v[y;2], then w[y; 1= w[y;.]=1. Since f' is a Boolean formula
monotone in literals, 1 = v[f']= w[f']. Finally, the correctness of claim (3.2.2) follows
from the proof of Proposition 2.5 (using literals instead of variables). 0

We might imagine, intuitively, that the “hard” problem instances must be construc-
ted in a series of steps, each of which combines problems that are slightly less hard.
Our next result shows that such intuition is wrong, and we can construct problems
that are as hard as they can be by combining two “’easy problems” with a single binary
operator. In this case, the easy problems are monotone Boolean formulas that are the
disjunctions of CNF formulas and that do not have variables occurring more than
once. These are ““easy problems” in that they are always satisfiable, are never tautologies,
and their solutions can be counted quickly.

THEOREM 3.3. Let F and G be Boolean formulas such that

(i) No variable occurs more than once in F or more than once in G,

52 H. B. HUNT III AND R. E. STEARNS

(ii) Fis a monotone CNF formula,

(iii) G is the disjunction of monotone CNF formulas.
Then, the following problems are SAT-complete (npolylogn, n):

(1) Determining if F= G,

(2) Determining if the formula (F and (~G)) is satisfiable,

(3) Determining if the formula (G or (~F)) is a tautology,

(4) Determining if the formula (F=>G) is a tautology, and

(5) Determining if the system of equations F=1 and G =0 has a solution.
Problems (2) and (5) are also NP-hard and Problems (1), (3), and (4) are coNP-hard.
The problems remain hard if

(ii") F is the conjunctior of monotone DNF formulas, and

(iii") G is a monotone DNF formula.

Proof. For all Boolean formulas F and G, the following are obviously equivalent:

(1) F=G,

(2) The formula (F and (~G)) is not satisfiable,

(3) The formula (G or (~F)) is a tautology,

(4) The formula (F=>G) is a tautology, and

(5) The system F=1 and G =0 has no solution.

Thus to prove the theorem, it suffices to prove that the problem of (1) is SAT-
complete (npolylogn, n) for monotone Boolean formulas F and G satisfying conditions
(i)-(iii) of the theorem.

Proof of (1). To prove SAT-hardness (npolylogn, n) and coNP-hardness, we give
an npolylogn time and linear size reduction that maps a formula f monotone in literals
to an inequality (=) of monotone Boolean formulas such that f is a tautology if and
only if the output inequality holds. When applied to formulas that are the disjunction
of CNF formulas where each variable appears exactly once complemented and exactly
once uncomplemented, the procedure will output F and G satisfying conditions
(i)-(iii). Thus by the dual of Theorem 3.2 and the transitivity of npolylogn time and
linear size reducibility, we can conclude that the problem of (1) is SAT-hard (npoly-
logn, n) for formula F and G satisfying conditions (i)-(iii) of the theorem. Given this,
the SAT-completeness (npolylogn, n) of the problem follows immediately from Propo-
sition 2.4.

Let f be a Boolean formula monotone in literals. Let x,, - - -, x, be variables
occurring in f. Let y,, - - -, y, be distinct variables other than x,, - - -, x,,. Let f' be the
monotone Boolean formula that results from f by replacing, for 1 =i = n, the occurren-
ces of (not x;) in f by y;. Let F, be the monotone Boolean formula (x, ory,) and - - - and
(x, or y,). Clearly, the formulas f’ and F,, are constructible from f determinstically in
linear time. Clearly f’ and F are monotone. We claim that

(3.3.1) f is a tautology if and only if F,=f".

To prove (3.3.1), assume v is an assignment of values from {0, 1} to variables
Xy, ", X, such that v[f]=0. Consider the assignment w to x,, y,, " -, X,,, Vs, such
that w[x;]=v[x;] and w[y;]=not v[x;] for all i = n. Clearly, w[f']=0 since f and f’
are identical formulas after their respective substitution of values for variables and
literals. Also w[F,]=1 because w[x; or v;]=1 for all i = n by construction. Therefore
w[F,]1>w[f'] and F,=f"' fails.

To prove (3.3.1) in the reverse direction, consider an assignment w of values from
{0, 1} to xy, y,,* * +, X, ¥» such that w[F,]=1 and w[f']=0. Consider the assignment
v from {0, 1} to x,,- - -, x, such that v[x;]=w[x;] for all i. A key fact is that this
assignment also satisfies v[X;]= w[y;]. This fact follows from w[x; or y;]=1 (because

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 53

w[F,]=1) and v[x;]= w[x;] (by construction). Again consider the formulas f and f’
after substitution for variables and literals. The resulting expressions are identical
except that certain occurrences of 1 in f' may be 0 in f (The reverse situation is
prevented by the “key fact.””) Because the expressions are monotone, w[f']=v[f].
But since w[f']1=0, »[f]1=0 and f is not a tautology. Thus (3.3.1) is proved.

Finally, we must verify that no variable is repeated in ' or F,,, when f has variables
appearing once complemented and once uncomplemented. But clearly f' has exactly
one occurrence of each x; and exactly one occurrence of each y,. F, is constructed to
have only single occurrences independently of f.

The statements about NP-hardness and coNP-hardness are evident from the proof.
To prove the result for alternative conditions (ii") and (iii’), observe that F = G implies
~G =~F. Applying DeMorgan’s laws and replacing variables by their complements
then gives result (1) and the others follow as above. 0

Although parts (1)-(5) of Theorem 3.3 are really five ways of saying the same thing,

they have different applications. Part (1) is a statement involving only A, v, and =
and it can thus be viewed as a statement about distributive lattices. Part (4) can be
viewed as a statement about logics without a negation operator. Parts (2) and (3) say
Boolean formulas become hard the very first time tractable formulas are combined.
Part (5) addresses systems of equations in which the constants 0 and 1 are available.

The “cause” of hardness in Theorem 3.3 is the two levels of or in G allowed by
condition (iii) or the two levels of and in G allowed by condition (ii’). If G has only
one level of ors and F only one level of ands, F = G becomes easy, even under the
following circumstances:

(a) F is the disjunction of CNF formulas, not necessarily monotone, in which
each CNF formula has no repeated variables.

(b) G is the conjunction of DNF formulas, not necessarily monotone, in which
each DNF formula has no repeated variables.

To see this, observe vCNF; = A DNEF,; if and only if CNF,=DNF,; for all i and j if
and only if (MCNF,; v DNF)) is a tautology for all i and j. Under DeMorgan’s laws,
(MCNF, v DNF,) becomes a DNF formula in which no variable occurs more than
twice, and the tautology problem for such formula is known to be in P.

The following corollary shows that the equivalence of monotone formulas is also
hard in simple cases:

COROLLARY 3.4. Testing f = g for formula is coNP-hard and SAT-complete (npoly-
logn, n) even if

(1) fis a monotone CNF formula, and
(2) g is the disjunction of monotone CNF formulas.

Proof. The proof follows from part (1) of Theorem 3.3, since F = G if and only
if F=FAG. 0

The next result extends Theorem 3.3 to questions about unique satisfiability:

THEOREM 3.5. The following problems are NP-hard and SAT-hard (npolylogn, n):

(1) Determine if a system of two monotone Boolean equations has a unique solution,
even if no variable occurs more than three times.

(2) Determine if a 3CNF formula has a unique solution, even if no variable occurs
more than three times.

Proof. We first show problem (1). Let F and G be monotone Boolean formulas
such that no variable occurs more than once in F and more than once in G. Let
Xy, **,X, be the variables occuring in F or in G. Let y,,- -, y, be n additional

54 H. B. HUNT III AND R. E. STEARNS

variables. Then, the following are equivalent:
(i) The system of equations

does not have a solution, and

(ii) The system of equations
(i Ay) Ve (X, Ap)vVG=0, Fv(ya---ay,)=1

has a unique solution.
To see the equivalence note that x,=---=x,=0and y,=---=y,=11is a solution of
the two equations of (ii). Any other solution of the equations of (ii) is a solution of
the equations of (i); and any solution of the equations of (i) can be extended to an
additional solution of the equations of (ii) by setting y,=--- =y, =0. Since (ii) can
be obtained from (i) in npolylogn time and (i) is NP-hard and SAT-hard (npolylogn, n)
by part (5) of Theorem 3.3, we have part (1) of this theorem. Problem (1) is reduced
to Problem (2) by the procedure of Proposition 2.4. (It is easily verified that this
procedure preserves the ‘‘at most three repetitions” property.) 0

We next show that the unique satisfiability problems of the previous theorem
have “essentially the same hardness” as SAT. In this case we will be using a Turing
reduction instead of a many-one reduction so we have a result for Turing-completeness
instead of completeness. Actually the reduction is a simple norm 2 truth-table reduction.

PROPOSITION 3.6. The problems of Theorem 3.5 are Turing-SAT-complete (npoly-
logn, n).

Proof- We need only consider the unique 3CNF problem (problem (2) of Theorem
3.5) since the first problem has already been efficiently reduced to the second in the
proof of Theorem 3.5.

Let f be a 3CNF formula. Let x,,- - -, x, be the variables occurring in f. Let
Y1,* ', Y. be additional variables. Then, f is uniquely satisfiable if and only if

f is satisfiable, and the Boolean formula f(x,, -, X,) Af(V1,* ", V) A
(x,@y,v-- '\{x,,@y,,) is not satisfiable.

Thus unique satisfiability can be solved by solving satisfiability twice. Each of these
formulas is linear in the size of the original. |

It is already known that unique SAT is coNP-hard and can be solved in pelynomial
time using NP twice as an oracle (see [24], [8]). Our proofs imitate some of the past
techniques, verifying the time and size of the reductions and applying them to the
special case of limited variable occurrences.

Consider the class of Boolean formulas where no variable appears more than
twice. We have a polynomial time algorithm that decides whether such a formula has
a unique solution. (We provide this algorithm in the Appendix.) Theorem 3.2 thus
tells us that this is a class of formulas where satisfiability is NP-complete and unique
satisfiability is polynomial. Furthermore, if P # NP, there can be no polynomial par-
simonious reduction from satisfiable Boolean formulas to this set, for this would
contradict Theorem 3.5(2).

Now we consider minimization for very simple Boolean formulas. We show that
the problem is “essentially at least as hard as” SAT. Since minimization is not a
language recognition problem, this characterization cannot be expressed in tems of
SAT-hard (npolygon, n). However the principle is the same. Any solution to the
minimization problem can be used to solve some SAT-hard (npolylogn, n) problem in
essentially the same time.

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 55

TueorReEM 3.7. Consider the problem of finding the minimal Boolean formula
equivalent to a monotone formula in which no variable occurs more than twice. Let T(n)
be any increasing function such that, for all k, T(n) = n(log n)* for almost all n. Suppose
that T(||w||) bounds above the deterministic time complexity of this problem in terms of
formula size. Then SAT € Dtime (T(c||w||)) for some constant c.

Proof. We will show how a minimization procedure can be used to solve problem
(1) of Theorem 3.3. Let F and G be monotone Boolean formulas in which no variable
occurs more than once in F or more than once in G. Let z bé a variable that is not
in F or G and consider the formula H = (F A z) v G. The value of H is independent
of z if and only if F= G. But the minimum formula for H will have variable z if and
only if H depends on z. Therefore F= G can be solved by scanning the minimum
formula for H for the presence of variable z. 0

We note that the proof of Theorem 3.7 goes through if the statement of the theorem
begins “Consider the problem of finding the minimal monotone Boolean formula....”

The results in this section are close to the best possible in that further simplifications
almost always give problems that are known to be polynomial.

Finally, direct analogues of the theorems in this section hold for Boolean formulas
involving operators other than and, or, and not. The next result lists a number of cases
where hard formulas can be constructed using variables which appear no more than
twice.

CoroLLARY 3.8. The satisfiability and tautology problems are SAT-complete
(npolylogn, n) for Boolean formulas F that involve only variables, parentheses, and one
of the following five possibilities:

(i) The nand operator | and the constant 1,

(ii) The nor operator | and the constant 0,

(iii) The implication operators=>and the operator not,

(iv) The implication operator=>and the constant 0, or

(v) The exclusive or operator @, the and operator ®, and the constant 1.
This statement remains true when F is restricted so that no variable occurs more than two
times in F. Furthermore, the = problem is SAT-complete (npolylogn, n) for pairs F, G
of such Boolean formulas such that no variable occurs more than once in F and more
than once in G.

Proof. Recall the following logical identities:

(1) nota=al|l=al0=a=0=a®]1,

(2) aorb=(a|1)|(b|1)=(alb)l0=not a=>b=(a=0)=>b,

(3) a and b= (a|b)|1=(al0){(bl0)=not (a=>not b), and

(4) a=b=10[(1Db)® a].

Because the quantities a and b appear once on each side of these identities, the
identies can be used to linearly transform expressions written with {and, or, not} into
expressions of the five types described in the corollary. Furthermore, this transformation
will preserve the number of occurrences of each variable. The corollary then follows
directly from Theorems 3.2 and 3.3 0

4. Applications to lattices, logic, and circuits. We use the results and proof tech-
niques of § 3 to show that a number of basic problems are SAT-hard (npolylogn, n)
and/or SAT-complete (npolylogn, n) for a wide collection of lattices. These problems
include the =, equivalence, and minimization problems for formulas, and the satisfiabil-
ity and unique satisfiability problems for systems of equations. These lattices include
all finite, finite-depth, atomic, and distributive lattices. Such lattices appear throughout

56 H. B. HUNT III AND R. E. STEARNS

discrete mathematics and computer science, especially in logic [36], [43], [44], com-
binatorics and geometry [2], [7], [53], and the design, analysis, and testing of combina-
tional logic circuits [11], [12], [19]-[21], [38], [46], [50]. Several applications are
presented to logic and to circuit analysis and testing.

4.1. SAT-hard and -complete problems for lattices. We first show that very close
analogues of the complexity results in § 3 for monotone Boolean formulas hold for
each finite lattice.

THEOREM 4.1. Let L= (S, v, A) be a finite lattice. Let R be a representation of L.
Consider the problems of Fig. 1 for L and R.

(1) Problems 1-10 of Fig. 1 are SAT-complete (npolylogn, n).

(2) Problems 11 and 12 of Fig. 1 are Turing-SAT-complete (npolylogn, n).

(3) Let T(n) be any increasing function such that, for all k, T(n)= n(log n)* for
almost all n. Suppose that T(|w|) bounds above the deterministic time complexity of
Problem 13 of Fig. 1. Then SAT e Dtime (T (c||w|)) for some constant c.

Proof. Let L and R be as specified in the statement of the theorem. The proof
has two parts.

Part 1. Proof of indicated lower bounds. It suffices to prove that Problems 2, 4,
6, 8, and 11 of Fig. 1 are SAT-hard (npolylogn, n) and that claim (3) of the statement
of the theorem holds for Problem 13 of Fig. 1. Let a € S be an atom of L. Let a be the
constant symbol of # denoting the element a. Let F and G be monotone Boolean
formulas such that

No variable occurs more than once in F and more than once in G.

Let F' and G' be the formulas on L and % that result from F and from G, respectively,
by replacing

Each occurrence of and by a,
Each occurrence of or by v, and
Each occurrence of a variable, say x, by (x A a).

—

. The =-problem for formulas F and G on L and .
. Problem 1 restricted to the case where no variable appears more than once in F or more than once in
G.
. The equivalence problem for formulas on L and %.
. Problem 3 restricted to the case where no variable appears more than once in F or twice in G.
. Determining if a system of equations on L and & has a solution.
. Problem 5 restricted to the case of two equations in which no variable appears more than twice, once
in each equation.
. Determining if a set of equations f; =g,, - * *, fx = g« implies an equation f = g for formulas on L and R.
8. Problem 7 restricted to the case f; = ¢, implies f=c on L where ¢, and ¢ are constants of & and no
variable occurs more than once in f; or once in f.
9. Determining if a Boolean combination of equations of the form f=g where f and g are formulas on
L and &, is satisfiable on L and &.
10. Determinig if a Boolean combination of equation of the form f =g, where f and g are formulas on L
and @, is true for L.
11. Determining if a system of equations on L and & has a unique solution.
12. Problem 11, even if the system has only three equations and no variable occurs more than four times
in the system.
13. Given a formula F on L and in which no variable occurs more than twice, finding an equivalence
formula H on L and ® of minimal size.

(o NN I V] N

=2

F1G 1. Problems that are hard for finite lattices.

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 57

Then, the following are equivalent.
(a) F=G.
(b) FF=G' on L.
(¢) FFAG'=G' on L.
(d) The system of two equations-on L and #

F'=a and G'=0

has no solution.

() G'=0 implies F'=0 on L.

(f) Let x,, -, and x, be the variables occuring in F or in G. Let y;,- - -, and
y. be n additional variables. The system of three equations on L and #

{xr Ay v v(xAp))vG=0,
Fv(yiA+ - Ay.)=a,

(xrvy) A A (X, vy,)=a
has a unique solution.

(g) Let z be a variable not occurring in F’ or in G'. Let H' be the formula
(F'anzaa)v G'. Aformulaon L and R equivalent to H' of minimal size does not have
an occurrence of the variable symbol z in it.

This equivalence is obtained by arguments closcly similar to those of the proofs of the
Theorems 3.3, 3.5, 3.7, and Corollary 3.4. To see this, it suffices to observe that

{bra|be S}={0,a}
and

Letting v’ and A’ be the restrictions of v and A of L, respectively, to {0, a}, the
structures ({0, a}, v’, A’) and BIN are isomorphic distributive lattices.

In part (f), the third equation restricts the x; and y; to {0, a}. Thus by Theorem 3.3,
Problems 2, 4, 6, 8, and 11 of Fig. 1 are each SAT-hard (npolylogn, n) and claim (3)
of the statement of Theorem 4.1 holds.

Part 2. Proof of indicated upper bound. To prove the upper bounds on Problems
1-10 of Fig. 1 claimed by the theorem it suffices to prove that Problem 9 of Fig. 1 is
npolylogn time and linear size reducible to SAT. The reduction is a fairly direct
extension of that of the proof of Proposiion 2.4 and is illustrated in Fig. 2. The reduction
of equations on L to SAT uses well-known encodings of finite structures into the
two-element Boolean algebra. 0

The =, equivalence, and minimization problems for formulas on a finite lattice
were shown to be coNP-hard in [26]. The reductions used to prove this are highly
nonlinear in size. For example, for distributive lattices the reductions are already of
size @(]lw||?). For nondistributive lattices, the reductions are significantly less size
efficient.

Part (1) of the proof of Theorem 4.1 can be easily generalized so as to apply to
many additional lattices as follows. Let L= (S, v, A) be a lattice with elements b, ac S
such that a covers b. Then, {(cvb)aa|ce S}={b, a}. Also letting v’ and A’ be the
restrictions of v of A of L, respectively, to {b, a}, the structures ({b, a}, v', A') and
BIN are isomorphic distributive lattices. Let b and a be distinct constant symbols
denoting b and a, respectively. Then, Problems 1-12 of Fig.1 are SAT-hard (npoly-
logn, n) for formulas and for systems of equations on L, where the only allowable
constant symbols are b and a. The minimization problem for such formulas on L is
also “as hard as” SAT in the sense of claim (3) of Theorem 4.1.

58 H. B. HUNT I1II AND R. E. STEARNS

Boolean combination of equations:

(~(fi=g1) or (f2=g2)) and ((f, = g3) or ~(f,=83))
3CNF formula for equation f=g:
(9,0rv,) and (v, or i) and {3CNF formula for f} and {3CNF formula for g}
3CNF formula for the Boolean combination of equations:

{3CNF formula for f, = g,} and

{3CNF formula for f, = g,} and

{3CNF formula for f, = g3} and

{3CNF formula for f, = g} and

{3CNF formula for w, = ~(v,, = v,)} and
{3CNF formula for w, = (v, = v,,)} and
{3CNF formula for wy = (v, = v,,)} and
{3CNF formula for w, = ~ (v, = v,,)} and
{3CNF formula for (w, or w,) and (w5 or w,)}

F1G. 2. Sample reduction: Boolean combinations of equations to 3CNF formulas.

Finally, the generalized satisfiability and tautology problems, for a formula F on
a lattice L with 0 and 1, are the problems of determining

If there is an assignment v of values from the domain of L to the variables of F
such that V[F]=1,

and if, for all assignments v of values from the domain of L to the variables of F,
v[F]=1.

Both problems are decidable deterministically in polynomial time, whenever
constant expressions on L can be evaluated deterministically in polynomial time (e.g.,
L is a finite lattice). This is easily seen by noting the folllowing. Let v, and v, be the
assignments of values from L to the variables of a formula F on L such that, for all
variables x, v;[x]=0 and v,[x]=1. Then, F=1 on L if and only if v;,[F]=1 on L.
Also, there is an assignment v of values from L to the variables of F such that v[F] =1
if and only if v,[F]=1.

4.2. Distributive lattices with an application to legic. By Theorem 1.4 the lower
bounds of Theorem 4.1 also hold for each distributive lattice. In particular, Problems
1-4 of Fig. 1 are SAT-complete (npolylogn, n) for constant-free formulas on any
distributive lattice. In the next two propositions, we show how each distributive lattice
with 1 can naturally be extended so as to have a SAT-hard (npolylogn, n) generalized
tautology or generalized satisfiability problem. In the first proposition, the extension
is obtained by appending an “implication” operator such that A=>B means “B is
more true than A.” In the second, we append a ‘“‘negative” operator such that some
lattice element represents ‘‘not true.”

ProrosiTiION 4.2. Let L' = (S, v, A,=>) be a nondegenerate algebraic structure such
that

(i) The structure L= (S, v, A) is a lattice;

(ii) There exists 1 in S such that, for all xe S, x=1 on L;and

(iii) The operator = is binary and, for all x, y€ S, (x=>y)=1 on L' if and only if
x=yon L.

Then, the set

{(F, G)| F and G are formulas on L such that F = G on L}

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 59

is linear size reducible to the set
{(F=G)|F and G are formulas on L; and (F=G)=1 on L}.
In particular, if L is a distributive lattice, then the set

{(F= G)|F and G are constant-free formulas on L such that no variable occurs
more than once in F and more than once in G; and (F=G)=1 on L}

is SAT-complete (npolylogn, n).

Proof. For arbitrary L, the conclusion follows immediately from (iii). For distribu-
tive L, the additional conclusion follows from (iii), Theorem 1.4, and Theorem 3.3. 0

ProrosiTION 4.3. Let L'=(S, v, A, ~) be a nondegenerate algebraic structure such
that

(i) The structure L= (S, v, A) is a distributive lattice,

(ii) There exists 1 in S such that , for all xe S, x=1 on L, and

(iii) The operator ~ is unary, ~1# 1 on L', and there exists b € S for which ~b=1
on L.
Then, the set

{(F A (~G))|F and G are constant-free formulas on L such that no variable
occurs more than once in F and more than once in G,
and there exists an assignment v of values from S to the variables such that
V[(FA(~G))]=1o0n L'}

is SAT-complete (npolylogn, n).
Proof. By Theorems 1.4 and 3.3, it suffices to prove that

There exists an assignment v of values from S to the variables such that v[(F a
(~G))]=1 on L' if and only if it is not the case that F=G on L.

The proof consists of two cases.

Case 1. If F=G on L, then v[(F A (~G))]=1 on L' implies that v[F]=v[G]=
~v[G]=1 on L', contradicting (iii).

Case 2. Suppose it is not the case that F= G on L. By Theorem 1.4 it is not the
case that F = G on BIN. Hence, it is not the case that F = G on the distributive lattice
({b, 1}, v', A") where v’ and A’ are the restrictions of the operators v and A, respectively,
to {b, 1}. Thus, there is an assignment v of values from {b, 1}, and hence from S, to
the variables such that v[G] = b and v[F]= 1. Hence, v[(F A (~G))] =1 using (iii). 0O

A number of the lattice-theoretical models of propositional calculi studied in the
literature of algebraic logic [7], [43], [44] are known to satisfy the conditions of
Propositions 4.2 and/or 4.3 [43]. Thus, there are many formula theories such that
Proposition 4.2 implies that the logical validity and/or decision problems are SAT-
complete (npolylogn, n) for simple formulas. These theories include the propositional
calculi of classical two-valued logic in the logical theories L, L, L,, L;, and L, in
[36], of positive logic [23], of intuitionistic logic [22], the modal logic S, [32], and for
m=2, the m-valued logic of Post [42]. Intuitively, these theories are in a class of
theories where suitable and, or, and implication operators can be defined by suitable
formulas and the axioms and theorems evaluate to ““true” in all associated models.
Formalizing this class of theories is beyond the scope of this paper.

4.3. Some applications to circuit analysis and testing. Theorem 3.3 has a number
of immediate applications to circuit analysis and testing, including computing signal

60 H. B. HUNT III AND R. E. STEARNS

probability [41], [40], computing signal reliability [39], determining the testability of
stuck-at faults [19], [38], [46], [50], and detecting the presence of static hazards [11],
[12], [16]. To apply the theorem, we first give some definitions and observe some
equivalences.

Let F and G be Boolean formulas with principle connectives and and or,
respectively, and let z be a variable not occurring in F or G. (The principle connectives
do not really matter but they are drawn as and and or in Fig. 3(a).) Let the combinational
circuits C,[F, G], C,[F, G], and C5[F, G] be constructed from fan-out free monotone
circuits for F and for G as shown in Fig. 3.

Given a set of variables, we let eq be the probability distribution on assignments
that result when each variable is independently assigned the value 1 with probability
one half. For any predicate P, we let pr.,{P} be the probability that P is true if the

xl .. X.

(a)

@ circuit for
F and ~G

z Xp o+ X, z X; - X

(b) (c)

FI1G. 3. Circuits definitions for § 4.3. (a) The circuit C,[F, G]. (b) The circuit C,[F, G]. (c) The circuit
Gi[F, G].

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 61

variables in P are assigned values randomly according to distribution eq.
Given the above definitions, the following statements are equivalent:
(i) F=G.

(ii) pre{Fand G=1}=pr. {F=1}.

(iii) pregtFor G=1}=pr.{G=1}.

(iv) prefG=1|F=1}=1.

(v) preg{the output of C,[F, G]is correct, when the gate labeled « is stuck-at-one
and all other gates are correct} = 1.

(vi) The gate labeled @ in C,[F, G] is not testable for a stuck-at-one fault.

(vii) The circuit C,[F, G] does not have a static 0-hazard, when input z is
indeterminant.

(viii) The circuit C;[F, G] does not have a static 1-hazard, when input z is
indeterminant.

The equivalence of the first four statements is obvious. The others require some
explanation since we are not giving the formal definitions of stuck-at faults and static
hazards. The fault detection problem is to determine, by setting circuit inputs and
observing circuit outputs, whether a specified circuit gate is performing properly. In
Fig. 3(a), we would like to test if the gate labeled a always gives output one (i.e., is
stuck at 1) instead of behaving (as it should) like an or-gate. To test this, we must set
the variables so that the gate output should be 0 (i.e., G is false) and the output of
circuit G is true. This cannot be done if and only if F= G. With this explanation, the
equivalence of (v) and (vi) to (i) should be apparent.

Static hazards are defined formally in terms of a three-valued logic with values
0, 3, 1 where 0 and 1 behave as FALSE and TRUE and 5 behaves as “‘undetermined.”
In Fig. 3(b), making z underdetermined (assigning z value 3) causes (by definition)
the output of the and-gate (which is input to the or-gate) to be undetermined. This
indeterminancy will pass through the or-gate (by definition) if and only if the other
input to the or-gate is 0 or 3. But this can happen for determined assignments to
x; - -+ x, ifand only if ~ F or G is not a tautology and hence not F = G. The equivalence
of (i) and (vii) should now be apparent and equivalence to (viii) becomes apparent
with a dual argument.

From the above equivalences, the following result is immediate.

THEOREM 4.4. Let F and G be monotone formulas satisfying the conditions of
Theorem 3.3. Let the three-level monotone circuit C,[F, G], and the simple combinatorial
circuits C,[F, G| and C5[F, G] be constructured from F and G as in Fig. 3. The following
problems are SAT-complete (npolylogn, n):

(1) Determining if pr.{F and G =1} = pr{F =1},

(2) Determining if pre{F or G=1}=pr.{G=1},

(3) Determining if pr.,{G=1|F=1}=1,

(4) Determining if pr.,{the output of C,[F, G] is correct, given that the gate labeled
a is stuck-at-one and all other gates are operating correctly} =1,

(5) Determining if the gate labeled o in C[F, G] is testable for a stuck-at-one fault,

(6) Determining if the circuit C,[F, G] has a static 0-hazard, when input variable
z is indeterminant, and

(7) Determining if the circuit Cs[F, G] has a static 1-hazard, when input variable
z is indeterminant. 0

Conclusions (1)-(5) of Theorem 4.4 show that, even when two easy cases are
combined, computing signal probability, computing the probabilities of joint or of
conditional events, computing signal reliability, and determining the testability of
stuck-at faults are ““as hard as” the satisfiability problem for 3CNF formulas. (Recall

62 H. B. HUNT III AND R. E. STEARNS

that pr.,{H =1} can be computed deterministically in polynomial time, when H is a
Boolean formula without repeated variables. Also, recall that the testability of single
stuck-at faults can be determined deterministically in polynomial time, for combina-
tional circuits without fanout.) Conclusion (5) strengthens the result of [50] that the
testability problem for single stuck-at faults is NP-complete for three-level monotone
circuits.

Finally, we point out how testing techniques in the literature can be interpreted
in our algebraic context. From [46] it can be inferred that

Determining the testability of a multiple stuck-at fault in a combinational circuit
is npolylogn time and linear size reducible to determining if a system of equations
over the four element Boolean algebra has a solution,

and from [12] it can be inferred that

Determining if a combinational circuit has static 0- or 1-hazards, when a particular
input variable is indeterminant, is npolylogn time and linear size reducible to
determining if a system of equations on the three elements DeMorgan lattice L,
has a solution.

Inboth cases, the later problem is SAT-complete (npolylogn, n). Thus, both determining
the testability of single stuck-at faults and determining the presence of static 0- and
1-hazards in the very simple combinational circuits of the statement of Theorem 4.4
are “‘as hard as” the respective problems for arbitrary combinational circuits.

5. Applications to finite fields, modular arithmetic, binary decision diagrams, and
program schemes. We use the results and proof techniques of § 3 to show that several
basic problems are also SAT-hard (npolylogn, n), for finite fields, rings Z, (k=2) of
integers modulo k, binary decision diagrams (bdds) [5], and monadic single variable
program schemes [35]. Our new results strengthen and simply NP- and coNP-hardness,
results, for rings in [29], [9], and [27] and for bdds and monadic single variable
program schemes in [25] and [17]. Assuming P # NP, a number of the results obtained
are “‘best” possible.

5.1. Finite fields and modular arithmetic. In [9] the equivalence problem is shown
to be coNP-hard, for formulas on each finite field and on each ring Z, (k=2). Here,
we use Theorem 3.2 to show, for each of these rings, that the equivalence problem is
both coNP-hard and SAT-hard (npolylogn,n) for formulas involving only the
operations +, —, ®, and exponentiation by constants in which no variable occurs more
than two times.' As a corollary of the proof, we also show, for each of these rings R,
that

Determining if a system of equations on R in which no variable occurs more than
once in each equation

is both NP-hard and SAT-hard (npolylogn, n). This last result strengthens results in [27].
! By exponentiation by constants, we mean that we are allowed to denote a formula Fe®---® F (n=2

F’s) by F". For such formulas F", the number of occurrences of a variable in F" equals the number of
occurrences of the variable in F (rather than, n times the number of occurrences in the variable in F).

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 63

THeEOREM 5.1. The following problems are both coNP-hard and SAT-hard (npoly-
logn, n):

(i) For all finite fields F, determining if a formula on F, involving only variables,
parentheses, +, —, ®_ exponentiation by constants, and one in which no variable occurs
more than two times, is equivalent to 0 on F.

(ii) For all k=2, determining if a formula on the ring Z,, involving only variables,
parentheses, +, —, ® exponentiation by constants, and one in which no variable occurs
more than two times, is equivalent to 0 on Z,.

Proof. (i). Let S be the domain of F. Let k =|S|. Recall that, forallae S, a* ' =1,
if a#0, and a* '=0, if a=0[34]. Let f,, f,, f», and f; be the functions on S defined
by

fo@)y=a""", fila)=1-a, fia,b)=1-[(1-a)e®(1-b)], fi(a,b)=aeb.

Let fi, f>, and f; be the restrictions of fi, f>, and f3, respectively, to {0, 1}.

The structure ({0, 1}, f,, f;,f,,0,1) is isomorphic to the two-element Boolean
algebra. Thus, the claim of the theorem for (i) follows by a direct simulation of the
proof of Theorem 3.2 by replacing each occurrence of a variable, say z, by z*7', each
occurrence of or by f,, each occurrence of and by f5, and each occurrence of not by
f,. Since the formulas for expressing f,(a), f,(a, b), and f5(a, b) on F have the same
number of occurrences of a and of b as the formulas not a, a or b, and a and b,
respectively, this replacement can be accomplished in deterministic linear time.

(ii) The proof follows that of Corollary 4.3 of [9, pp. 897, 898]. Let S be the
domain of Z,. There are two cases.

Case 1. k=p™ for some integer m =1 where p is a prime. The proof is the same
as that for (i) above except that the function f, on S is defined by fy(a) = LA
Note that by Euler’s theorem, fy(a) =1, if p ¥ a, and fy(a) =0, if p|a.

Case 2. k=p™n where p#2 is a prime, m is an integer =1, and p A n. By the
Chinese Remainder Theorem, Z, is isomorphic to Z,» X Z,, where the isomorphism
I is given by, for all a€ S, I(a)=(a,, a,) where a,=a mod p™ and a,= a mod n. Let
A={x|0=x<p™n, and p|x}, and let B=1""((1,0)). Let f, be the function on S
defined by fola)=(na)"" PV If ac A, then p divides a, and hence, p™n divides
fola). Thus, fo(a)=0. If ae S— A, then gcd (na, p™)=1. Thus by Euler’s theorem
(na)”" "' *"Y'=1mod p™. Also, (na)”" " V=0mod n. Thus, I((na)”" ' *~V)=(1, 0),
and hence, fy(a)=B. Let f,, f>, and f; be the functions on S defined by

fila)=B—a, fia b)=fi(a+b), fia b)=p~—f(B~a,B~b).

Since p #2, 28 € S — A. Thus, f; maps {0, 8} to {0, 8} and f, and f; map {0, 8} x{0, B}.
Let 1, f5, and f} be the restrictions of f,, f5, and f3, respectively, to {0, 8}. Then, the
structure ({0, B}, f5,f5,/1,0, B) is isomorphic to the two element Boolean algebra.
As in the proof for (i) above, the formulas for f;, f,, and f; do not have repeated
variables and a linear time transformation of problems can be accomplished. a

COROLLARY 5.2. Let R be any finite field or ring Z, (k=2). Then, determining if
a system of two equations on R of the form

fi=a, fr=c

has a solution on R is both NP-hard and SAT-hard (npolylogn, n), where f, and f, are
formulas on R involving only varibles, parentheses, exponentiation by constants, and one
in which no variable occurs more than once in f, and more than once in f, and ¢, and ¢,
are constant symbols denoting elements of R.

64 H. B. HUNT III AND R. E. STEARNS

Proof. In each case, the theorem follows by a direct simulation of the proof of
Theorem 3.3 using the replacement given in the proof of Theorem 5.1. 0

5.2. Binary decision diagrams and program schemes. The Executability problem
(EP) for a class C of program schemes is the problem of determining, given a scheme
Sin C and a label A of S, if there exists an interpretation I of S such that the statement
labeled by A in S is executed during the computation of S under I In [25] the EP
has been shown to be NP-complete for the class Sw of monadic single variable program
schemes without loops consisting only of predicate tests and halt statements. Theorem
3.2 can easily be combined with the proof of [25] to prove the significantly stronger
result that the EP is both NP-complete and SAT-hard (npolylogn, n), for the classes
of program schemes S in Sw such that no predicate test occurs more than two times
in S.

One easy and immediate corollary is the following.

THEOREM 5.3. The isomorphism, strong equivalence, weak equivalence, containment,
totality, and divergence problems are already SAT-hard (npolylogn, n), for monadic single
variable program schemes S such that no predicate test occurs more than two times in S.

Any monadic single variable program scheme in which no predicate test occurs
more than once is free. Thus Theorem 3.3 yields a simple, immediate, and direct proof
of the following result.

THEOREM 5.4. The weak equivalence and containment problems are coNP-complete
and are SAT-hard (npolylogn, n), for the free monadic single variable program schemes.

Proof. Let F and G be monotone Boolean formulas, each without repeated
variables. As shown in Fig. 4, the monadic single variable program schemes Sr and
Ss can be constructed from F and G, respectively, in deterministic npolylogn time.
Clearly, the sizes of Sg and Sg are linearly bounded in the sizes of F and G, respectively.
Since no variable is repeated in F or in G, no predicate test occurs more than once
in Sr and more than once in S;. Thus, Sg and S are both free. Let St and S be
the free monadic single variable program schemes in Fig. 5. It can easily be seen that
the following statements are equivalent:

(1) F=G;

(2) For any interpretation I such that the statement labeled A in Sk is executed
during the computation of S under I, the statement labeled A in S is executed
during the computation of Si under I;

(3) S is weakly equivalent to Si5; and

(4) Sk is contained by S&. 0

Each monadic single variable program scheme in Sw can also be viewed as a
binary decision diagram. Thus a number of strengthened hardness results for bdds can
be read off from Theorems 3.2 and 3.3 and the proofs of Theorems 5.3 and 5.4. For
example, the following holds.

THEOREM 5.5. The tautology, satisfiability, and equivalence problems are both coNP-
complete, and SAT-complete (npolylogn, n) for bdds in which no variable occurs more
than two times. Moreover, the = problem is both coNP-complete and SAT-
complete (npolylogn, n) for bdds in which no variable occurs more than one time. 0

Finally, let F(x,, -, x,) be a Boolean formula denoted by a bdd Dg in which
no variable occurs more than one time along any path. A straight-line program, to
compute the value of p{F = 1} from the values of p{x; = 1} 1 =i = n for any independent
probability distribution p, can be constructed from Dy deterministically in polynomial
time. Let F and G be two such formulas. Let pr and pg be the associated straight-line
programs computed from bdds Dr and Dg. Then, pr and ps are equivalent for all

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS

S, is - pi(x)

|

A.True B.False

. S
S(F, or F,) 1S = Fi
Al.True B1.False
SFz
2.False
A2.True
A.True B.False
. S

S(Fl and Fy) 18 — Fy
Al.True] B1.False

SF2
A2.True B2.False

A.True B.False

F1G. 4. Program schemes for proof of Theorem 5.3.

65

66 H. B. HUNT III AND R. E. STEARNS

S¥ Sk
Ag.True Bg.False
x+—f(x) False
A.True
S¢’ Sa
Ag.True Bg.False
x+f(x)
A.True B.False

F1G. 5. Program schemes for proof of Theorem 5.4.

assignments of values from {x is a real| 0= x = 1} to their variables if and only if F= G
if and only if pr and ps are equivalent for all assignments of values from the reals to
their variables. Using the RP algorithm in [29] for the Inequivalence Problem for
straight-line on infinite integer domains, we obtain an alternative proof for the following
theorem from [10].

THEOREM 5.6. There are RP algorithms for the inequivalence problem for bdds in
which no variable occurs more than once along a path and for the strong equivalence
problem [35] for free monadic single variable program schemes.

6. Conclusion. The concepts of npolylogn time and linear size reducibility, SAT-
hard (npolylogn, n), and SAT-completeness (npolylogn, n) have been introduced. Each
SAT-hard (npolylogn, n) problem has been shown to require essentially as much
deterministic time as SAT; and each SAT-complete (npolylogn, n) problem has been
shown to require essentially the same deterministic time as SAT.

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 67

Extending our earlier work in [28], we have proved that the =, satisfiability,
tautology, unique satisfiability, equivalence, and minimization problems are already
SAT-complete (npolylogn, n), for very simple Boolean formulas and systems of Boolean
equations. In particular in Theorem 3.3, the = problem has been shown to be SAT-
complete (npolylogn, n), for very simple monotone Boolean formulas F and G such
that no variable occurs more than once in F or more than once in G. This problem,
or equivalent variants of it, has been shown to be directly and naturally npolylogn
time and linear size reducible to a number of problems for lattices, logics, combinatorial
circuits, finite fields, modular arithmetic, monadic single variable program schemes,
and binary decision diagrams. Thus, each of these additional problems is also SAT-
hard (npolylogn, n).

Assuming P# NP, a number of the hardness results of this paper are ‘“best”
possible. In [13] it is shown that there is a deterministic polynomial time algorithm to
convert a Boolean formula

Involving only variables, parentheses, the operators or, and, not, and @, and the
constants 0 and 1 in which no variable occurs more than once

into an equivalent ordered bdd [17]. In [17] the equivalence problem for ordered bdds
is shown to be decidable deterministically in polynomial time. Thus, the equivalence
problem is also decidable deterministically in polynomial time, for pairs of Boolean
formulas (F, G)

Involving only variables, parentheses, the operators or, and, not, ®, =, |, |, and
=, and the constants 0 and 1 in which no variable occurs more than once in F
and more than once in G.

(Contrast this with Corollaries 3.4 and 3.8.) Moreover, the satisfiability problem is
decidable deterministically in polynomial time, for systems of equations of the form
F = ¢, where F is such a Boolean formula, c € {0, 1}, and no variable occurs more than
once in the system. (Contrast this with Theorem 3.3(5).) For Boolean formulas involving
only the operators or, and, and not, more can be said. Namely, two such formulas in
negation normal form (i.e., nots are applied only to variables) are equivalent if and
only if they are identical up to commutativity and associativity of or and of and [28].
One immediate corollary is that, for all lattices L, the equivalence problem is decidable
deterministically in polynomial time for constant-free formulas on L in which no
variable occurs more than once. (Contrast this with Theorem 4.1(1).) Finally, we recall
the remark in § 3 that the unique satisfiability result in Theorem 3.5 is best possible
in that the same problem for two repetitions can be solved in polynomial time. As
noted in § 3, this means (assuming P # NP) that there is no parsimonious reduction
of the satisfiability problem for CNF formulas to the satisfiability problem for Boolean
formulas in which no variable occurs more than twice.

Appendix. The purpose of this Appendix is to prove the following result mentioned
in the discussion after Proposition 3.6.

THEOREM. Let L be the set of pairs (S, F) such that

(1) S is a set of variables;

(2) F is a Boolean formula using operators {and, or, not}, constants {TRUE,
FALSE}, variables from S, and parentheses,

(3) No variable appears more than twice in F,

(4) Only one assignment to variables in S make F true.
There is a polynomial time algorithm for L.

68 H. B. HUNT III AND R. E. STEARNS

Set S must be given as part of the problem so that we can represent the case
where some variable of S occurs zero times in F. If some variable occurs zero times,
then F is not uniquely satisfied.

There are certain simplifications that can be applied to any Boolean formula and
which preserve properties (3) and (4) of the Theorem. DeMorgan’s laws can be used
so that formula F is monotone in literals. Formulas with constants can be simplified
to formulas without constants (or to constant formulas). Pairs of the form (S, x A F)
can be simplified to (S —{x}, F,) where F, is F with TRUE substituted for x. Finally,
(S, X A F) can be simplified to (S —{x}, F,) where F, is F with x replaced by FALSE.

The above simplifications can be applied repeatedly until the formula is a constant
or a formula of the form

(*) (Gi\vH) A"+ A(Giv Hy)

for some k=1. The constant FALSE is never satisfiable and the constant TRUE is
uniquely satisfiable if and only if the set of variables is empty. We thus only need a
polynomial test for formulas of the form ().

If formula (*) is uniquely satisfiable, there is an assignment that for each i, makes
G; or H; true. We can assume without loss of generality that it is G;, which is true. If
some variable in S does not appear in any G;, that variable can be changed without
changing any of the G;, and (*) is not uniquely satisfiable. Thus each variable of S
appears at least once in some G, and therefore the variables can appear at most once
in the formula

() H,A- A H,

and (**) must have a satisfying assignment. Thus if (*) is uniquely satisfiable, that
assignment must make all the G; and all the H; true. Changing the value of a variable
x in the assignment must make some G;v H, false, and so x must appear in both G;
and H;. From the above considerations, we conclude () is uniquely satisfiable if and
only if the following three conditions hold:

(i) All variables of S appear in (*)

(ii) For each i, G; and H, have the same variables

(iii) For each i, G; v H; is uniquely satisfiable.

Conditions (i) and (ii) are easy to test in polynomial time and we get the main
result if we can test condition (iii) in polynomial time. Each variable in formulas H;
and G; occurs only once (by (3) and (ii)) and G; v H; will have more than one solution
if either G; or H; contains the operator or. We conclude that condition (iii) is equivalent
to the following two conditions:

(iiia) Each G; and H; is the conjunction of literals;

(iiib) G; and H,; have the same literals.

Both these conditions can be tested in polynomial time and the result is proved.

REFERENCES

[1] J. C. ABBOTT, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Boston, MA, 1969.

[2] L. ADLEMAN AND K. MANDERS, Computational complexity of decision procedures for polynomials, in
Proc. 16th Annual IEEE Symposium on Foundations of Computer Science, Berkeley, CA, IEEE
Computer Society, Washington, DC, 1975, pp. 169-177.

[3] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[4] A.V.AHO, R.SETHI, AND J. D. ULLMAN, Compilers Principles, Techniques, and Tools, Addison-Wesley,
Reading, MA, 1986.

[5] S. B. AKERS, Binary decision diagrams, IEEE Trans. Comput., 27 (1978), pp. 509-516.

COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 69

[6] M. BAUER, D. BRAND, M. FISCHER, A. MEYER, AND M. PATERSON, A note on disjunctive tautologies,
SIGACT News, April 1973, pp. 17-20.

[7] G. BIRKHOFF, Lattice Theory, 3rd ed., American Mathematical Society, Providence, RI, 1967.

[8] A. BLASS AND YU. GUREVICH, On the unique satisfiability problem, Inform. and Control, 55 (1982),
pp. 80-88.

[9] P. A.BLONIARZ, H. B. HUNTIII, AND D. K. ROSENKRANTZ, Algebraic structures with hard equivalence
and minimization problems, J. Assoc. Comput. Mach., 31 (1984), pp. 879-904.

[10] M. BLum, A. K. CHANDRA, AND M. N. WEGMAN, Equivalence of free boolean graphs can be decided
probabilistically in polynomial time, Inform. Process. Lett., 10 (1980), pp. 80-82.

[11] M. A. BREUER AND A. D. FRIEDMAN, Diagnosis and Reliable Design of Digital Systems, Computer
Science Press, Rockville, MD, 1976.

[12] J. A. BRZOZOowsKI AND M. YOELI, Digital Networks, Prentice-Hall, Englewood Cliffs, NJ, 1976.

[13] S. CHAKRAVARTY, On the testing, reliability analysis, and synthesis of combinatorial circuits, Ph.D.
dissertation, Departmentof Computer Science, State University of New York, Albany, NY, 1986.

[14] S. CHAKRAVARTY AND H. B. HUNT 11, On the generation of test vectors for multiple faults in digital
circuits, in Proc. 22nd Annual Allerton Conference on Communication, Control and Computing,
October 1985, pp. 176-182.

[15] S. A. Cook, The complexity of theorem-proving procedures, in Proc. 3rd Annual ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York, 1971, pp. 151-158.

[16] E. B. EICHELBERGER, Hazard detection in combinational and sequential switching circuits, IBM J. Res.
Develop., 9 (1965), pp. 90-99.

[17] S. FORTUNE, J. HOPCROFT, AND E. M. SCHMIDT, The complexity of equivalence and containment for
free single variable program schemes, in Proc. 1978 Conference on Automata, Languages, and
Programming, G. Ausiello and C. Bohm, eds., Lecture Notes in Computer Science, 62, Springer-
Verlag, Berlin, New York, 1978, pp. 227-240.

[18] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, CA, 1979.

[19] P. GOEL, An implicit enumeration algorithm to generate tests for combinational logic circuits, IEEE Trans.
Comput., 30 (1981), pp 215-222.

[20] J. P. HAYES, A calculus for testing complex digital systems, in Proc. Dig. 10th Fault-Tolerant Computing
Symposium, Kyoto, Japan, 1980, pp. 115-120.

, Digital Simulation with multiple logic values, IEEE Trans. Computer-Aided Design, (1986), pp.
274-283.

[22] A. HEYTING, Intuitionism, North-Holland, Amsterdam, 1959.

[23] D. HILBERT AND P. BERNAYS, Grundlagen der Mathematik, 1, Springer-Verlag, Berlin, New York,
1934.

[24] H. B. HUNT 111, Restricted set recognition problems and computational complexity, Tech. Report 05-77,
Center for Research in Computing Technology, Aiken Computation Laboratory, Harvard Univer-
sity, Cambridge, MA, 1977. '

[25] H. B. HUNTIII, R. L. CONSTABLE, AND S. SAHNI, On the computational complexity of program scheme
equivalence, SIAM J. Comput., 9 (1980), pp. 349-416.

[26] H. B. HuNT, III, D. J. ROSENKRANTZ, AND P. A. BLONIARZ, On the computational complexity of
algebra on lattices, SIAM J. Comput., 16 (1987), pp. 129-148.

[27] H. B. HUNT III AND R. E. STEARNS, Nonlinear algebra and optimization on rings are “hard,” SIAM
J. Comput., 16 (1987), pp. 910-929.

, Monotone Boolean formulas, distributive lattices, and the complexities of logics, algebraic structures,
and computation structures (preliminary report), in Proc. STACS86 3rd Annual Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 210, B. Monien and
G. Vidal-Naquet, eds., Springer-Verlag, Berlin, New York, 1986, pp. 277-291.

[29] O. H.IBARRA AND S. MORAN, Probabilistic algorithms for deciding equivalence of straight-line programs,
J. Assoc. Comput. Mach., 30 (1983), pp. 217-228.

[30] D.S.JOHNSON, The NP-Completeness Column: An Ongoing Guide, J. Algorithms, 6 (1985), pp. 291-305.

[31] S. C. KLEENE, Introduction to Metamathematics, D. Van Nostrand, Princeton, NJ, 1950.

[32] C. 1. LEwis AND C. H. LANGFORD, Symbolic Logic, Dover, New York, 1932.

[33] P. M. LEwis, D. J. ROSENKRANTZ, AND R. E. STEARNS, Compiler Design Theory, Addison-Wesley,
Reading, MA, 1976.

[34] S. MACLANE AND G. BIRKHOFF, Algebra, Macmillan, New York, 1967.

[35] Z. MANNA, Mathematical Theory of Computation, McGraw-Hill, New York, 1974.

[36] E. MENDELSON, Introduction to Mathematical Logic, 2nd ed., D. Van Nostrand, New York, 1979.

[21]

[28]

70 H. B. HUNT III AND R. E. STEARNS

[37] M. MUKAIDONO, A set of independent and complete axioms for a fuzzy algebra (Kleene algebra), in
Proc. 11th IEEE International Symposium on Multiple-Valued Logic, 1981.

[38] P. MURTH, A nine-valued circuit model for test generation, IEEE Trans. Comput., 25 (1976), pp. 630-636.

[39] R. C. OGus, The probability of a correct output from a combinational circuit, IEEE Trans. Comput., 24
(1975), pp. 534-544.

[40] K. P. PARKER AND E. J. MCCLUSKEY, Analysis of faults using input signal probabilities, IEEE Trans.
Comput., 24 (1975), pp. 573-578.

[41] , Probabilistic treatment of generalized combinational networks, IEEE Trans. Comput., 24 (1975),
pp. 668-670.

[42] E. L. PosT, Introduction to a general theory of elementary propositions, Amer. J. Math., 43 (1921), pp.
165-185.

[43] H. RasiowA, An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam, 1974.

[44] H. RAsiowA AND R. SIKORSKI, The Mathematics of Meta-Mathematics, Panstwowe Wydawnictwo
Naukowe, Warzawa, Poland, 1963.

[45] S. S. Ravi AND H. B. HUNT 111, An application of planar separator theorem to counting problems,
Inform. Process Lett. (1987), pp. 317-321.

[46] J. P. ROGTH, Diagnosis of automata failures: A calculus and a method, IBM J. Res. Develop., 10 (1966),
pp. 278-291.

[47] J. B. SAXE, Embeddability of weighted graphs in k-space is strongly NP-hard, in two papers on graph
embedding problems, Tech. Report CMU-CS-80-102, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, 1980.

[48] R. E. STEARNS AND H. B. HUNT II1, On the complexity of the satisfiability problem and the structure
of NP, Tech. Report 86-21, Department of Computer Science, State University of New York,
Albany, NY, 1986.

, On SAT and the relative complexities of NP-hard problems (extended abstract), Tech. Report
87-20, Department of Computer Science, State University of New York, Albany, NY, 1987.

[50] H. ToipA AND S. FUIIWARA, The complexity of fault detection problems for combinational logic circuits,
IEEE Trans. Comput., 31 (1982), pp. 555-560.

[51] C. A. ToVEY, A simplified NP-complete satisfiability problem, Discrete Appl. Math., 8 (1984), pp. 85-89.

[52] L. G. VALIANT AND V. V. VAZIRANI, NP is as easy as detecting unique solutions, in Proc. 17th Annual
ACM Symposium on Theory of Computing, Association for Computing Machinery, New York,
1985, pp. 458-463.

[53] D.J. A. WELSH, Matroid Theory, Academic Press, New York, 1976.

[49]

SIAM J. COMPUT. © 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 71-77, February 1990 004

LOWER BOUNDS FOR THE STABLE MARRIAGE PROBLEM
AND ITS VARIANTS*

CHENG NGt aND DANIEL S. HIRSCHBERGT

Abstract. In an instance of the stable marriage problem of size n, n men and n women, each participant
ranks members of the opposite sex in order of preference. A stable marriage is a complete matching
M ={(m;, w;), (my, w,), -, (m,, w,~")} such that no unmatched man and woman prefer each other to their
partners in M. There exists an efficient algorithm, due to Gale and Shapley, that finds a stable marriage for
any given problem instance.

A pair (m;, w;) is stable if it is contained in some stable marriage. In this paper, the problem of
determining whether an arbitrary pair is stable in a given problem instance is studied. It is shown that the
problem has a lower bound of Q(n?) in the worst case. Hence, a previous known algorithm for the problem
is asymptotically optimal.

As corollaries of these results, the lower bound of Q(n?) is established for several stable marriage
related problems. Knuth, in his treatise on stable marriage, asks if there is an algorithm that finds a stable
marriage in less than ©(n?) time. The results in this paper show that such an algorithm does not exist.

Key words. stable marriage problem, stable pair, analysis of algorithms, lower bounds
AMS(MOS) subject classifications. 68Q25, 90B99

Introduction. An instance of the stable marriage problem involves two disjoint
sets of equal cardinality n, the men denoted by m;’s and women denoted by w;’s. Each
individual ranks all members of the opposite sex in order of decreasing preference. A
matching M ={(m,, w,), (m,, w;,), - - -, (m,, w;)} is a stable marriage if there does not
exist an unmatched man-woman pair (m;, w;) such that both prefer each other to their
partners in M. At least one stable marriage exists for any given problem instance. In
most problem instances, there exists more than one stable marriage. Moreover, there
are problem instances of size n where the number of stable marriages are exponential
in n [IL86] [Kn76].

Gale and Shapley [GS62] first demonstrated that stable marriages exist for all
problem instances and gave an algorithm that finds a stable marriage for any problem
instance. The stable marriage obtained with the Gale-Shapley algorithm is male-
optimal; that is, no man can receive a better match in any other stable marriage for
the same problem instance. Moreover, by reversing the roles of men and women, the
algorithm also finds the female-optimal stable marriage.

There are numerous expositions and analyses of the Gale-Shapley algorithm
available in the literature [It78], [MW71], [Kn76]. The algorithm’s worst-case
asymptotic time complexity, ®(n?), is optimal for the stable marriage problem in the
following sense. To input the description of a problem instance, which includes all
preference rankings, requires Q(n?) time. However, the “computational” component
(omitting time required for input) of the Gale-Shapley algorithm requires O(n log n)
operations on the average [Wi72], despite its ®(n’) worst-case complexity.

It is interesting to investigate if there exists a faster algorithm that solves the
problem under a model that ignores the input requirement. We shall elaborate on this
model in the next section. In 1976, Knuth posed this question as one of twelve research
problems in his treatise on stable marriage [Kn76]. Our main contribution in this paper

* Received by the editors June 27, 1988; accepted for publication (in revised form) March 28, 1989.
T Department of Information and Computer Science, University of California at Irvine, Irvine, California
92717.

71

72 CHENG NG AND DANIEL S. HIRSCHBERG

is to show that such an algorithm does not exist; that the computational component
of the stable marriage problem has a worst-case complexity of Q(n?). In a related
problem, Gusfield [Gu87] asks if it is possible to determine in o(n?®) time if an arbitrary
complete matching is stable. We also answer this question in the negative by showing
the lower bound of Q(n?) for this problem.

We have noted earlier that it is possible to have multiple stable marriages in a
problem instance. We define a man-woman pair (m;, w;) stable if it is contained in
some stable marriage. Consider the problem of determining whether an arbitrary pair
is stable in a given problem instance. Gusfield [Gu87] provides an O(n?) algorithm
that finds all stable pairs, and hence also solves the above problem. Our approach in
this paper is first to show the Q(n?) lower bound for this problem. The other results
follow as corollary.

1. Model of computation. In the introduction, we noted that our lower bound
results must not depend on the time required to read the input for a problem instance.
Hence, our model assumes that all participants’ preferences are available in memory.
It is useful to organize these preferences into two n X n integer matrices MP and WP
such that the ith row of MP (WP) gives the preferences of m; (w;). For example,
MPIi, j]1=k if m;’s jth preference is wy.

For maximum generality, we also assume that two ranking matrices, denoted MR
and WR, are available in memory. An entry in the men’s ranking matrix, MR[i, j],
gives the ranking (position of preference) of w; by m;. Entries in WR, the women’s
ranking matrix, have similar interpretations.

The preference and ranking matrices are inverses of each other; for example,
MP[i, MR[i, j]]1=j and MR[i, MP[i, j]]=j. Hence, the ranking matrices can be com-
pletely constructed from the preference matrices in O(n?) time. However, an algorithm
may rely on the ranking matrices to determine quickly the ranking assigned to a
participant by another of the opposite sex. Using the preference matrices to obtain
this information can be slower because the algorithm has to search an entire row in
the worst case.

We will use the notations MP, MR, WP, WR only when the problem instance
associated with these matrices can be clearly determined from context. When there is
a possibility of ambiguity, we use the notations MPs, MRg, WPs, and WRg, where S
denotes a specific instance of the stable marriage problem.

Our lower bound is established by counting the number of times an algorithm
must obtain information about the problem instance. In our model, such information
is obtained with two types of queries. Given the identity of a participant and an integer
i, the first type of query obtains the identity of his/her ith preference. Given two
participants of opposite sex, the second type of query finds the ranking of the first
participant in the second’s preference. Each query can be accomplished in O(1) time
via a simple lookup of one of the four matrices.

2. The canonical instance. For every size n, our proofs are centered on a special
instance of the stable marriage problem that we call the canonical instance and denote
by C. An important characteristic of C is that the pair (m,, w,) is stable in it. However,
there exists a large family of problem instances that differ only slightly yet sufficiently
from C such that (m,, w,) is not stable in them. Later we will show how to construct
such a problem instance which we call a minimally noncanonical instance and denote
by ~C.

We will show that before any algorithm can correctly determine that (m,, w,) is
stable in C, it must make a certain minimum number of queries on the preference and

LOWER BOUNDS FOR THE STABLE MARRIAGE PROBLEM 73

ranking matrices. Otherwise, it is possible to complete these matrices by giving appropri-
ate values to the remaining entries that are not queried, and obtain a ~C that refutes
the algorithm’s correctness. This is due to the large number of possible ~C'’s, each
derivable with only minor changes to C. Hence, the algorithm must make a large
number of queries to eliminate all potential ~C’s, supporting our lower bound claim.

We now define the women’s preference matrix, WP.. Entries in WP, are defined
by the function WP.[i, j]=j, asillustrated in Fig. 1. Lemmas 1 and 2 give two properties
of WP..

1 2 ... n
F1G. 1. Women’s preference matrix, WP.

LEMMA 1. In a problem instance where WP is the women’s preference matrix, the
matching S constructed by the following rules is a stable marriage.

(i) When a woman receives a match, she is removed from the preference list of all
remaining men.

(ii) Match m, with his highest preference.

(iii) After my, m,, - -, m;_, are matched, m; is matched with the highest preference
remaining on his list.

Proof. Rule (i) ensures that each woman is matched only once. Hence, S is a
proper matching.

If m; prefers w; to his match in S, then by rule (iii), w; is matched with m, such
that k <i. However, the preferences in WP show that w; prefers m, to m,. Hence, m,
and w; cannot destabilize S. a

LEMMA 2. Regardless of the men’s preferences, any problem instance that has WP
as the women’s preference matrix yields exactly one stable marriage.

Proof. Any stable marriage is represented in WP, by exactly one entry in each
column. In particular, this is true of the male-optimal stable marriage S obtained by
the Gale-Shapley algorithm.

Suppose there exists another stable marriage S'. For every matched pair (m;, w;)
in S that has changed partners in S’, m; receives a less preferable partner in S’ because
S is male-optimal. Therefore, w; receives a more preferable partner in S’. Otherwise,
(m;, w;) is an unstable couple in S'.

Hence, every woman either has the same partner in both S and S’, or she has a
more preferable partner in S’ than in S. According to WP, the subscript of each
woman’s partner decreases or stays the same. However, this requires that some column
in WP, be represented in S’ by more than one entry. We conclude that S’ does not
exist.]

Lemma 1 gives us an algorithm that we will use in the proofs of Lemmas 3 and
4. The algorithm finds a stable marriage; it is shown by Lemma 2 to be the only one
available.

We now describe the men’s preference matrix, MP.. Entries in MP. fall into
three groups. The first group, underlined in Fig. 2, includes the first row, last row, and
tridiagonal entries of the remaining rows. The first and last rows consist of the integers
1 to n in increasing order. The tridiagonal entries of row i are the integers i, n, and

74 CHENG NG AND DANIEL S. HIRSCHBERG

12 3 4 5 ... 1—-2 i-1 4 i+1 42 ... n—-4 n-3 n—-2 n-1 n
1 12 3 4 ... n—-2 n-1 n
2 2 n 1 38 4 .. n-—1
3 13 n 2 4 .. n-1
7 1 2 i—2 i n t—1 i41 n-1
n-2|1 2 . n—4 n—2 n n—-3 n-1
n—1{1 2 . n-3 n—1 n n-—2
n 12 3 4 n=2 n-1 n

FI1G. 2. Men’s preference matrix, MP,..

i—1 in that order. Of the remaining entries, the group left of the tridiagonals consists
of integers 1 to i —2 in increasing order. The group right of the tridiagonals consi
of integers i+1 to n—1 also arranged in increasing order.

LeEmmMaA 3. (m,, w,) is a stable pair in C.

Proof. Apply the algorithm of Lemma 1 to C. Scanning the ith row of MP., note
that all entries to the left of i have values less than i. These entries represent those
women matched in previous rows. Hence, m;’s stable partner is w; and
{(my, wy), (my, wy), -+ -, (m,, w,)} is a stable marriage in C. 0

3. Obtaining noncanonical instances. Starting with C, we obtain a ~ C by selecting
a row i of MP. such that 3=i=n-2, and exchanging two special entries, / and r, in
that row. All entries left of the tridiagonal are candidates for I, but only those right of
the tridiagonal with values that differ from i by odd numbers are candidates for r. Note
that / is equal to its column number, and r’s column number is r+1.

To formalize the above construction, we define, for each i, two sets of integers

L={x|1=x=i-2}, and
Ri={x]i+1=x=n—-1 and x#i(mod2)}.

Then, for any i, [, and r satisfying3=i=n-2,le L,,and r € R;; we define MP_[i I]=r
and MP_.[i,r+1]=1 All other entries of MP_. and WP_. are equal to their
corresponding entries in MP- and WP..

LEMMA 4. (m,, w,) is not a stable pair in ~C.

Proof. Apply the algorithm of Lemma 1 to ~C. Figure 3 illustrates the stable
marriage that results.

® m, is matched with w, for 1 =k =i—1 because these rows are unchanged from
C.

® m; is matched with w,. Note that »# i (mod 2), which guarantees that there is
an even number of rows between row i+ 1 and row r—1 inclusive.

® Fori+1=k=r—1, m, is matched with w, if k# i (mod 2) and m, is matched
with w,_, if k=i (mod 2). Note that m,_, is matched with w,_, and m,_, is matched
with w, 5.

The above discussion shows that w,, w,, - - -, w;_; are matched in rows 1 to i —1;
Wi, Wiy, * *, W,_, are matched in rows i+1 to r—1; and w, is matched in row i. The
subscripts of these women account for every entry left of the diagonal entry n in row
r. Hence, m,’s partner is w,.

~C has only one stable marriage by Lemma 2. Since w,, is married to m, and not
m, in this marriage, (m,, w,) is not a stable pair. 0

LOWER BOUNDS FOR THE STABLE MARRIAGE PROBLEM 75

12 3 ... 1 ... 1=-2 i-1 1 t+1 i+2 ... r—=3 r—-2 r-1 r
1 2 3
2 n 1
3 1 n
;'—1 l 2 n 1—-2 ...
i 1 2 i n i—1
i+1| 1 2 i-1 [i+1] =n i
i+2) 1 2 i-1 [i+2 n 41 ..
i+3] 1 2 e it noo..
i+4| 1 2 i+1 it4 .
;'-2 l 2 ’ r—2 n r—3
r—1]1 1 2 r—3| r-1 n r—2 ...
r 1 2 r—3 r—2 r]

F1G. 3. Stable marriage in ~C.

4. A counting argument. The construction of ~C is made possible by the exchange
of appropriate ! and r values. Until an algorithm has eliminated all possibilities of
such exchanges, it cannot conclude correctly that it is dealing with the problem instance
C. However, the large number of valid choices of i, I, and r gives us the following bound.

LEMMA 5. If n=3k+4 for some integer k=1, the minimum number of queries
needed to eliminate all possible constructions of ~C’s is 3k(k+1).

Proof. To eliminate row i from participating in the construction of a ~C, the
algorithm must query either all of L; or all of R;. To eliminate all possible constructions
of ~C’s, all rows must be eliminated.

|L|=i-2=k<[(Q2k+1)/2]1=[(n—i—1)/2]1=|R}]|
for3=i=k+2, and
|ILj=i-2=k+1>[2k/2]1=[(n—i—1)/2]=|R/|
for k+3=i=n-2.

Therefore the minimum number of queries needed

n—2
= 3 min (ILJ IR)

k+2 n—2
=3 |14|*' E: |}2J

i=3 i=k+3

k+2 n—2

=3 (=2+ ¥ [(n=i=1)/2]

k+2 3k+2

=Y (i-2+ Y [Gk+3-i)/2]

I M =

k
=1

J

2j
j=1

=3k(k+1). a

5. Lower bounds results. We are now ready to state our main result.

THEOREM. Determining if an arbitrary pair is stable in a problem instance of size
n requires Q(n?) time in the worst case.

76 CHENG NG AND DANIEL S. HIRSCHBERG

Proof. Without loss of generality, we may assume that n =3k +4 for some integer
k= 1; otherwise, we extend the problem instance by adding the appropriate number
of men and women.

By Lemmas 3 and 4, it is necessary to distinguish between C and ~C in order
to determine if (m,, w,) is stable. By Lemma 5, any algorithm that distinguishes between
C and ~C must make at least 3k(k+1)=3((n—4)/3)(((n—4)/3)+1) queries. Hence,
the number of queries necessary is Q(n?). 0

CoROLLARY 1. The asymptotic time complexity for determining if an arbitrary pair
is stable in a problem instance of size n is ©(n?).

Proof. The theorem provides an Q(n”) lower bound. Gusfield’s algorithm provides
an O(n®) upper bound. 0O

CoroOLLARY 2. The asymptotic time complexity for finding a stable marriage in a
given problem instance of size n is ®(n?).

Proof. We noted earlier that the Gale-Shapley algorithm runs in O(n?) time. The
only stable marriage in C is different from the only stable marriage in ~C, and Q(n?)
queries are required to distinguish between them. 0

CoRrOLLARY 3. The asymptotic time complexity for determining if an arbitrary
complete matching is a stable marriage in a given problem instance of size n is ®(n?).

Proof. An obvious algorithm that solves this problem in O(n®) time exists. The
matching {(m,, wy), (m,, w,), - - -, (m,, w,)} is a stable marriage in C but not in ~C,
and Q(n”) queries are required to distinguish between them. a

Historical note. The problem in Corollary 3 was raised by Gusfield [Gu87, p.
127]. He gives an algorithm that requires only 3n(n —1)+2n queries. By Lemma 5, we
show that at least §(n —4)(n —1) queries are needed.

6. Conclusions. We have shown that the lower bound of Q(n?) holds for three
stable marriage-related problems. This lower bound is fundamental to stable marriage
and holds for other variants of the stable marriage problem, including the following
class of optimization problems. Given an instance of the stable marriage problem X,
we define a real-valued function V, whose domain is the set of stable marriages in X.
The problem of finding a stable marriage M that maximizes (or minimizes) V(M) has
a lower bound of Q(n?), by an argument similar to that of Corollary 2. By varying the
definition of V, we can formulate different variants of the stable marriage problem.
We give three such problems that have been studied in the literature.

Suppose (m;, w;) is a pair in a marriage. The regret of m; is the ranking he gives
to w;, which equals MR[i, j]. Similarly, the regret of w; equals WR[j, i]. The regret
of a marriage M is the maximum regret among all the participants. The minimum
regret stable marriage problem is to find a stable marriage with the minimum regret.
Gusfield [Gu87] gives an algorithm that solves this problem in O(n®) time, which is
asymptotically optimal.

The Gale-Shapley algorithm favors one set of participants heavily over the other.
It is often desirable to obtain a stable marriage that treats both sexes more equitably.
The egalitarian stable marriage problem is to find such a marriage M, one that minimizes
Limowpem MR, j1+ WR[j, i]. An algorithm that solves the egalitarian problem in
O(n’log n) time is given in [Fe89].

A weighted version of the egalitarian problem is the optimal stable marriage problem.
In this problem, the rankings are replaced by general “unhappiness” functions um(i, j)
and uw(j, i) for every possible pair (m;, w;). The goal is to find a marriage M that
minimizes Z<m,,w,.)eM um(i, j)+uw(j, i). An algorithm that solves the optimal problem
in O(n*log n) time is given in [ILG87].

LOWER BOUNDS FOR THE STABLE MARRIAGE PROBLEM 77

An important generalization of the stable marriage problem that has received
substantial attention is the stable roommate problem. This problem involves only one
set of participants. Using a similar definition for stability, the goal is to find an
assignment (a partition of the participants into pairs) that is stable. For every variant
of the stable marriage problem described in this paper, there is a corresponding stable
roommate variant that is similarly defined. Moreover, the Q(n”) lower bound applies
to these variants. This claim is supported by the observation that every instance of the
stable marriage problem is also an instance of the stable roommate problem having
the same solution structure. We refer readers to [Gu88, p. 767] for a general discussion
of this relation.

Variants of the stable roommate problem that have O(n?) algorithms include the
following: determining whether an arbitrary pair is stable [Gu89]; determining whether
an assignment is stable; finding a stable assignment [Ir85]; and the minimum regret
problem [1r86]. Obviously, no asymptotic improvement is possible with these problems.
Feder has shown that the egalitarian stable roommate problem—and by implication,
the optimal stable roommate problem—is NP-complete [Fe89].

Acknowledgments. We thank Dan Gusfield and an anonymous referee for many
helpful suggestions that have improved the presentation of this paper.

REFERENCES

[Fe89] T. FEDER, A new fixed point approach for stable networks and stable marriages, in Proc. 21st
Symposium on Theory of Computing, Seattle, WA, 1989, pp. 513-522.

[GS62] D.GALE AND L. SHAPLEY, College admissions and the stability of marriage, Amer. Math. Monthly,
69 (1962), pp. 9-15.

[Gu87] D. GuSsFIELD, Three fast algorithms for four problems in stable marriage, SIAM J. Comput., 16
(1987), pp. 111-128.

[Gug8] , The structure of the stable roommate problem: Efficient representation and enumeration of
all stable assignments, SIAM J. Comput., 17 (1988), pp. 742-769.
[Gu89] , Personal communications, 1989.

[IL86] R. W.IRVING AND P. LEATHER, The complexity of counting stable marriages, SIAM J.Comput.,
15 (1986), pp. 655-667.

[ILG87] R. W. IRVING, P. LEATHER, AND D. GUSFIELD, An efficient algorithm for the ‘‘optimal” stable
marriage, J. Assoc. Comput. Mach., 34 (1987), pp. 532-543.

[1r85] R. W. IRVING, An efficient algorithm for the ‘‘stable roommates” problem, J. Algorithms, 6 (1985),
pp. 577-595.

, On the stable room-mates problem, Tech. Report CSC/86/R5, University of Glasgow,
Glasgow, UK, 1986.

[1t78] S. Y. ITOGA, The upper bound for the stable marriage problem, Oper. Res., 29 (1978), pp. 811-814.

[Kn76] D. E. KNUTH, Mariages Stables, Les Presses de L’Université de Montréal, Montréal, 1976.

[MW71] D. G. McVITIE AND L. B. WILSON, The stable marriage problem, Comm. ACM, 14 (1971), pp.
486-492.

[Wi72] L. B. WILSON, An analysis of the stable marriage assignment problem, BIT, 12 (1972), pp. 569-575.

[1r86]

SIAM J. COMPUT. © 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 78-97, February 1990 005

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS
WITH MULTIPLE ARGUMENTS*

HIROFUMI YOKOUCHIt AND TERUO HIKITA#

Abstract. Categorical combinators have been derived from the study of categorical semantics of lambda
calculus, and it has been found that they may be used in implementation of functional languages. In this
paper categorical combinators are extended so that functions with multiple arguments can be directly
handled, thus making them more suitable for practical computation. A rewriting system named CCLMB is
formulated for these combinators. This system naturally corresponds to the type-free AB-calculus. The
relationship between these two systems is established, and as a result of this, the Church-Rosser property
of CCLMB is proved. A similar relationship is also established between the original CCLB by Curien and
the type-free AB-calculus with product. Finally the embedding theorem of CCLMp into CCLpB is shown.

Key words. categorical combinator, Church-Rosser property, combinator, functional programming,
lambda calculus, rewriting system

AMS(MOS) subject classifications. 03B40, 68C01

1. Introduction. Categorical models of lambda calculus have been extensively
studied. See, e.g., [4], [5], [10]-[13], [18], [19] and the bibliographies therein. (See
also [16].) Curien [4], [5] introduced categorical combinators from such categorical
semantics of lambda calculus, and he formulated rewriting systems for them, such as
CCLB and CCLB%SP. In this paper, extending CCLB, we propose a new kind of
system called CCLMg and establish a natural correspondence between CCLMB and
A-calculus as rewriting systems.

It is well known that A-calculus and Cartesian closed categories (CCC) are
essentially the same. This correspondence involves explicit products in A-calculus.
Certainly the structure of products is expressed by A-terms in the type-free A-calculus,
but, to give a strict correspondence between the two systems, the A-calculus needs to
have explicit products. For the computational aspect of A-calculus, products are not
so important; we may want to have a CCC-like structure that strictly corresponds to
A-calculus without products.

In the correspondence between A-calculus and CCC, the product in CCC plays
two different roles: one is handling variables in A-terms, and the other is handling the
product itself. Let M be a A-term with free variables z,, - - -, z,. Then M is regarded
as an n-ary function. In CCC, M is interpreted as an arrow from the product of the
objects corresponding to the free variables z,, - - -, z,. Access of the free variables in
M is represented by projections in CCC. The structure of the product in CCC is
defined in a general form, and consequently the corresponding A-calculus has the same
general structure of product. This is why the A-calculus needs explicit product for the
strict correspondence between A-calculus and CCC. If we separate these two uses of
product, we may obtain a more natural correspondence between A-calculus without
product and a CCC-like structure.

Obtutowicz and Wiweger [17], based on functorial semantics of algebraic theory
[14], introduced another kind of categorical models of A-calculus, called Church

* Received by the editors November 3, 1987; accepted for publication (in revised form) April 22, 1989.

+ IBM Research, Tokyo Research Laboratory, 5-19 Sanban-cho, Chiyoda-ku, Tokyo 102, Japan.

f Department of Mathematics, Tokyo Metropolitan University, 2-1-1 Fukazawa, Setagaya-ku, Tokyo
158, Japan. Present address, Department of Computer Science, Meiji University, 1-1-1 Higashi-Mita,
Tama-ku, Kawasaki 214, Japan.

78

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 79

algebraic theory. They have shown that models of the pure type-free A-calculus without
product are essentially the same as Church algebraic theory. This result is a model
theoretic one, that is, the correspondence between Church algebraic theory and A-
calculus is examined as equational systems. In this paper, however, we discuss syntac-
tical rewriting systems for categorical structure of A-calculus. Using Obtutowicz and
Wiweger’s idea, we extend categorical combinators by Curien and propose the rewriting
system CCLMB.

The key idea of CCLM is arities of functions. In CCLMB, every term has its
fixed arity, say n, and the term intuitively represents an n-ary function. In the original
system CCL}, the arity of the function represented by a term of CCLS is determined
according to the context in which the term appears. The system CCLMp, moreover,
has an operator that constructs n-tuples, and projection p; that directly gives the ith
member of an n-tuple. The projections are used in access of variables when a A-term
is interpreted in CCLg.

We show a natural correspondence concerning reduction between the pure type-
free AB-calculus and CCLMg. Through this correspondence, various properties of
A-calculus can be transferred to CCLM}. In particular, we show that CCLMg satisfies
the Church-Rosser property using that of A-calculus.

Incidentally, the systems of categorical combinators have a strong resemblance
to the functional-style language FP of Backus [1]. Categorical combinators have been
used in implementation of functional languages [3]. (See also [15].) Our system is
suited for practical computation where multiple arguments prevail. Moreover, our
system may be applied to partial computation (or often called partial evaluation),
which is a method of computing a function with more than one argument by supplying
values to only a specified part of the arguments. It has many applications such as
compiler generation [7]. With the mechanism of arities, the operation of currying and
application are naturally extended to ‘““partial currying” and ‘‘partial application” in
CCLMB.

In § 2 the new categorical combinators are introduced, and the rewriting system
CCLMB is formulated for these combinators. In § 3 some derived combinators are
introduced that will be useful in practical computation. In § 4 we briefly state the
model theoretic aspects of the system. In § 5 the translation algorithms are introduced
between CCLMpB and A-calculus, and in § 6 theorems on the relationship concerning
reduction between these two systems are established. In § 7, the Church-Rosser property
of CCLMB is proved using the results in § 6. In § 8, we deal with the original system
CCLPB without arities and show similar results to those for CCLMg. Finally, in § 9,
we show that CCLMB can be embedded into CCLS.

We assume the reader has basic knowledge of A-calculus (e.g., [2]). The acquaint-
ance with categorical combinators [4], [5] is desirable, but this paper is self-contained
and makes no use of previous results about them.

Recently, Curien [6] further extended the results of this paper.

2. Rewriting system CCLM . We extend the original categorical combinators by
Curien [4] and introduce the formal system named CCLMp. Before presenting its
formal definition, we explain the intuitive meaning of the new combinators.

We design CCLMg so that arities of terms are explicitly specified. First consider
the operation ° that means function composition. Let f be an n-ary function, then the
right-hand side of f o (—) must be a multivalued function whose value is an n-tuple.
We introduce an operation that constructs an n-tuple of functions. For n functions
fi,- -, f. of equal arity, say k, the angular bracket (f,, - - -, f,) means a multivalued

80 H. YOKOUCHI AND T. HIKITA

function of arity k, the ith value of which is the value of f;. Function composition is
defined only in the form fo(f;, -, f,) for an n-ary function f and an n-valued
function (f}, - - -, f,). We assume that every term is a single-valued function. By this
assumption, (fi, - -, f,) itself is not a term, so that compound expressions such as
(g1, fi, .), &2 are disallowed. Moreover, we introduce combinator p;', 1=i=n,
that means the ith projection of an n-tuple. The combinators p; are extensions of Fst
and Snd of the original categorical combinators.

For currying operation A, we specify the arities of functions. For n=0, the
operation A, applies to a function with n+1 arguments and means currying. More
precisely, for a function f of arity n+1, A,(f) means the curried function whose
arguments correspond to the first n arguments of f. Informally, A,(f) is represented as

Azi, oo za) - (A flz, 0, 20, X))

in a A-calculus-like notation. To cope with this extension of the currying operation,
App is also extended. In our definition, App receives two arguments, and the composi-
tions of App appear only in the form Appe°(f,,f,). The first argument of App is
regarded as a curried function and App applies the first argument to the second one.
In a A-calculus-like notation, App is represented as A(x, y) - xy.
Now we formally give the definition of terms of CCLMB.
DEeFINITION. We define terms of CCLMpB with nonnegative integer called arity.
A term with arity n is called n-ary term. For every constant its arity is uniquely specified.
We assume that there are special constants: p; of arity n for all pairs of # and i such
that n=1 and 1 =i=n, and App of arity 2. The other constants are called nonspecial
constants. Then the terms of CCLMp are defined as follows:
(1) Every constant is a term.
(2) For m, n=0, if F is an m-ary term and G, - -, G,, are n-ary terms, then
F°{(G,, -, G,), is an n-ary term.
(3) For n=0, if F is an (n+1)-ary term, then A, (F) is an n-ary term.
In the following, terms are denoted by F, G, F;, etc. We write F = G when F and
G are syntactically the same. We almost always omit the subscript n of
Fo(G,, - +,Gn,.and A,(F). Note that Fo(), is a term of arity n for 0-ary term F.
Note also that n-tuples in themselves are not terms; they always appear as part of
composed terms.
Now we present the rewriting rules of the formal system CCLMB.
DEerFINITION. We define the binary relation — among the terms of CCLMp by
the following rules:
(1) (Fo(Gy," "+, Gu))e(H,, -, Hyp)
-—)F0<G10<Hl’ s HY) Gm°(H1,‘ .. ,Hn»-
(2) pie(F, -, F,)— F.
(3) co(py, -+, pmy— c, where c is an n-ary constant.
(4) A(F)°(Gy,"--,Gy)
= A(Fo(Gyo(py™, -, pi™), 0, Guodpy ™, -, pi D, pii)),
where F is (n+1)-ary, and G, - - -, G, are k-ary.
(5) App°(A(F),Gy— Fo(py,---,pn,G), where F is (n+1)-ary, and G is
n-ary.
(6) If F— F',then Fo(G,, -+, G,)— F'o(G,, -+, G,).
(7) If Gi— G/ for some i (1=i=m), then Fo(G,, -+,G;,"-+,G,)—
Fo(Gl’. G G
(8) If F— F', then A(F)— A(F').

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 81

We denote by %> the reflexive and transitive closure of —. Note that arity is
invariant under the relation — (and +»).

Example. We give an example of computation in CCLMgB. Let plus (x, y, z) =
x+y+z be a function with three arguments giving their sum. In CCLM$B,
Axyz - plus (x, y, z) is translated to the following (the translation algorithm will be given
in §5):

A(A(A(plus > (pi, p3, p)))).

Now, we give only one value 2 to its first argument, and partially compute it using
App. In the below, 2" means the constant-valued function with n arguments giving 2
as its result:

App ° (A(A(A(plus o (p7, p3, pI))), 2%
— A(A(plus °(p3, p3, p3))) (2% (by rule (5))
— A(A(plus o (p3, p3, p)) °(2° ()1, p1)) (by rule (4))
— A(A(plus o (p1, p3, p3)) ° (2, p1))
— A(A((plus o (p7, p3, p3)) o (2" o (pD), pi°(p}), p3))) (byrules (4), (8))
*> A(A((plus°(p7, p3, p3)) ° (2%, p1, p2)))
*> A(A(plus © (2%, p?, p3))).

3. Auxiliary combinators. For application of CCLMp to practical situation, it is
convenient to define more combinators. We introduce here several derived combinators
and rewriting rules in a more general form. They are helpful to understand the
mechanism of arities in CCLMp, too. However, they will not be used in the succeeding
sections.

DEFINITION.

(1) For n=0, define Id"=(p{, -+, pw)-

(2) For m=0 and n=0, define P™" =(p"*", -+ -, pm™".

(3) For an n-ary term F and m such that 1 =m = n, define the (n —m)-ary term

A™(F) by A'(F)=A(F) and A™"'(F)=A(A™(F)).
(4) For m=1 and n-ary terms F, G,,---,G,, define the n-ary term
APP"{F, G,, -, G,} by

APP' {F, G,}= App - (F, G)),
IAl)l)m-*—1 {E Gla T, Gm’ Gm+l}E ‘AppO (APPm {F; G17 Y Gm}7 Gm+1)'

(5) For m=1, define App™=APP™ {p7"*', p7*', - -+, pmii}.
LEmMA 3.1.
(i) A™(A"(F))=A"""(F).
(ii) APP" {APP'{F,G,, --,G},H,,--+,H,}
=APP"*""{F,G,,---,G, H,,---,H,}.

(iii) App™ o(F, Gy, -+, G,)* APP"{F, G,, -+, G,}.

Proof. The proof is straightforward and therefore is omitted. a

The auxiliary combinator Id" behaves like the identity function for n-tuples. But
Id" is not a term of CCLMp because it is an n-valued function. Rule (3) of CCLMp
is extended to the following derived rule.

ProposITION 3.2. F o 1d" *> F for every n-ary term F.

Proof. The proof is by induction on the definition of F. 0

82 H. YOKOUCHI AND T. HIKITA

The auxiliary combinators A™ and App™ are extensions of A and App, respectively.
For m = 1, the operator A™(—) means currying m times. Thus, for an (m + n)-argument
function f, A"(f) is the n-argument function defined by

A"(f)=AAC - (A) - 0)).
—_—

m times
Informally, in a A-calculus-like notation, A™(f) means
A<zla‘ tt aZrI)' (Axl Tt Axm.f(zla. t azn,xla' o ,xm))’

Likewise, for m=1, App™ receives m+1 arguments and applies the first argument to
the other m arguments. It is informally represented by

)‘<Z,xla”'axm>'le."xm'

Rules (4) and (5) of CCLMg have natural extensions for A™ and App™.
ProposiTION 3.3. Let Fbe (m+n)-ary and let G,, - - -, G, be k-ary, where m= 1.
Then,

A™(F)e(Gy, -+, Ga) = A"(F o(Gyo P, - G, o PR™, piiT, -, pii).
Proof. The proof is by induction on m. When m =1 this is identical to rule (4).
A" F)o(Gy, -+, Gy)

— A(A"(F) (G o P*', - -+, G, o P¥, pill)) - (byrule (4))

25 A(A™(F o {((Gy o P*Y) o P¥TIm .. (G, o P*Y)o prtim

piie PN pit™, -+, piiiim)) (by induction hypothesis)

*> A" (Fo(Gyo P oo Gyo PR pIGT e pliini)- O

LEMMA 3.4. Let Fbe (m+n)-ary, and let G,, - - -, G,, be n-ary, where m = 1. Then,
APP"{A™(F), Gy, -, G,}* Fo(py, - ,pn, Gy, -, Gy

Proof. The proof is by induction on . m. When m =1 this is rule (5).
APP" " {A"U(F), Gy, "+ +, Gy Gpuaa}

= App °(APP" {A""'(F), Gy, -+, G}, Gps1)

= Appo{A(F)°{py,--,pn,Gy, - +,G,), G..1) (byinductionhypothesis)

— App e (A(F o(pie P, - proP™,

GioP™, -+, Gpo P, i), Gmr) (by rules (4), (7))
= App o (A(Fe(pi™, -+, pn™", Gio P™, - -+, Gpo P™, pii0)), Gvt)
= (Fo(pi™, -, pu ', Gio P™, o+, G0 P, pil0))

o(pi, s Pns Gmsr) (byrule (5))

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 83
> F°<P?, e ,P:, GloId",- Y GmoId"’ Gm+1>
‘*">F°<P;',' ' "p:’Gl" ©, G, Gm+l> (by PrOPOSition3'2)-]

PrOPOSITION 3.5. Let Fbe (m+ n)-ary, and let G,, - - -, G,, be n-ary, where m= 1.
Then,

App” o (A™(F), Gy, " -+, Gy > Fo(py, -+, pn, Gi, "+, Gu).

Proof. The proof is immediate by combining Lemma 3.1(iii) and Lemma 3.4. 0

Example. We give an example of computation in CCLMB with the auxiliary
combinators. Let us use the same function plus (x, y, z) = x+ y + z, and give two values
2 and 3 to Axyz: plus (x, y, z):

App® e (A(plus*(pi, p3, p3)), 2, 3%
> A(plus o {p3, p3, p3)) ° (2% 3% (by Proposition 3.5)
> A((plus°(p3, p3, p3)) °(2°° ()1, 3% ()1, p1) (by rule (4))
=5 A(plus< (2", 3", p1)).

4. On models of CCLMp. Before we examine the properties of CCLMp as a
rewriting system, we digress and make a brief discussion about models of CCLMp as
an equational system in Cartesian closed categories (CCC). Those who are interested
only in the operational aspects of the system may skip this section.

Let C be a CCC. We say that an object U of C is reflexive, when there exists a
pair of arrows ¢:U- UY and ¢: UY — U such that ¢ o ¢ = id,v. This means that
UY can be embedded into U. It is known that CCC’s with reflexive object are essentially
the same as A-algebras (models of A-calculus [2]). See, e.g., [11]. Similarly, CCC’s
with reflexive object characterize models of CCLMpB. We can naturally interpret terms
of CCLMB in C with reflexive object U. An n-ary term of CCLMP is interpreted in
the set C(U", U) of arrows from U" to U. Here U" denotes the product

IXxXUX---xU
———

n times

where 1 is the terminal object of C.

The interpretation of terms in C is the following. For each n-ary term, we define
the arrow [F] from U" to U in C as follows. Here we assume that for every nonspecial
constant ¢ of CCLMB, [c] is already specified.

(1) [pfl=whY"Y (the (i+1)th projection from U™ to U).

(2) [App] = ev¥Y o (¢ x idy,), where ev”V :UY x U — U is the evaluation map.

(3) |IF°<Gl, Tt Gn>B=|[F]]°<|IG1]]a v ’IIGn]])

4) [A(F)]=¢ o ([(Flew/"Y)*, where h*:U"— UV is the transpose map of

h:U"xU— U.

Based on this interpretation we can prove that if F= G in CCLM as an equational

system, then [F] =[G] in C. That is, C is a model of CCLMB.

5. Translations between CCLMf and lambda calculus. In this section we define
translation algorithms for both directions between CCLMpB and lambda calculus, and
we establish the natural relationship between the terms in these two systems. The

84 H. YOKOUCHI AND T. HIKITA

lambda calculus we are concerned with is, more specifically, an extension of the
type-free AB-calculus, that we will denote by ABm. The system ABm has constants with
nonnegative integer called arity, just like CCLMp. Since we intend to establish the
relationship between CCLMpB and ABm, we assume that there is given a one-to-one
correspondence between the nonspecial constants of CCLM and the constants of ABm.

DerINITION. Terms of ABm are defined as follows:

(1) Variables are terms.

(2) If ¢ is an m-ary constant and N,, - - -, N,, are terms, then ¢(N,, -+, N,,) is

a term.

(3) If M and N are terms, then MN is a term.

(4) If x is a variable and M is a term, then Ax- M is a term.

The rewriting rules of ABm are exactly the same as the ordinary AB-calculus.

We provide notation for ABm. Terms of ABm are denoted by M, N, M, etc., and
variables are denoted by x, y, z, x,, etc. When reduction M — N is derived from the
rewriting rules of ABm, we sometimes write MW N. For terms M, N,,---, N,, of

ABm, we denote by M[x,, -, x,:=N,,- -, N,] the term obtained from M by
simultaneously substituting N,, - - -, N,, for free occurrences of variables x,, - - -, x,,
in M. We write M = N, when two terms M and N of ABm are the same except for
bound variables.

Now we describe the translation algorithm from ABm to CCLM§.

DEFINITION. Let(z,, -, z,) be a sequence of distinct variables (n =0). For each
term M of ABm whose free variables are contained in the set {z,, - - -, z,}, we define
the n-ary term [A(z,, -, z,) - M] of CCLM§B as follows:

(1) Mz, 5 z0) z]=pi, 1si=n

(2) [Mzi, -+, z0) - ¢(Ny, - -+, Niw)]

=co{[A{zy, **, 2z Ni1, - -+, [A{(z1, -,z N,,]), where ¢ is an m-ary
constant.

(3) Mz, -+, zn) - MiML]=Appe([A(zy, -+, z,) - MyL[Xzy, - -+, 20) - M)

(@) Mz, 5 z0) - (Ax- M)]=A([A(zy, - - -, 2, X) - Mi[x=X]]), where x'=x

if x is not in {z,, - - -, z,}, otherwise x' is a new variable.

In the following discussions, whenever we mention [A(z,, - - -, z,,) - M], we assume
that the variables z,,- - -, z, are distinct and that all the free variables in M are
contained in {z,, " " -, z,}.

Next we give the translation algorithm from CCLMp to ABm.

DEeFINITION. For each n-ary term F of CCLMB and terms N, - -, N, of ABm,
we define the term F*[N,,---, N,] of ABm as follows:

(1) (pH*[Ny,- -, N, J=N, 1=i=n

(2) App* [Ny, N,]= N, N;.

3) ¢*[Ny, -+, N,]J=c(N,, -, N,) for each n-ary nonspecial constant c.

(4) (Fo(Gy, -+, Gu)*[Ny, -+, N,]

=F*[GY[Ny, -+, N,],- -+, Gh[Ny, -+ -, No]l.
(5) (A(F))*[Ny,: -+, N,]=Ax- F¥[N,, -+, N,, x], where x is a variable not
free in Ny, -+, N,.

An n-ary term F of CCLMB means an n-ary function. Thus F is intuitively
represented by a ABm term M with free variables x,, - - -, x,,. In the above definition,
F*[N,,---, N,]means M[x,, -+, x,:=N,, -, N,]. Thus, this notation consists of
two parts: translation of F into a term of ABm with n free variables, and substitution
for the free variables. Actually, we can verify that

F*[le. : .’Nn]E(F*[xly. : '9xn])[x1" "7xn:= le' ..’Nn]'

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 85

Now we return to the former translation algorithm and give basic lemmas concern-
ing it. To distinguish reductions in CCLMp and ABm, we write FCC—> G when the
reduction is derived in CCLMB. In particular, when F -———> G is derived without
rule (5) for App, we write F ——> G. Rule (5) corresponds to the B-rule of A-calculus.

The other rules have various good properties. For example, the relation ——— is

SUBM
noetherian; namely, there is no infinite sequence F,, F,, -- of terms such that
Fi <o Fo <0 . We refer to [8], which deals with a subsystem of CCLB7nSP.

See also [6]. Moreover, when we examine the properties of the above translation
algorithms, it is convenient to separate rule (5) from the other rules. This is the reason
for introducing SUBM as a subsystem of CCLMB.

LEMMA 5.1.
(i) [/\<Zl9...7zn>.M]E[/\<zll"",Z;>.M[Zl7".az ‘:Z’l7"'9z!n]]
() A0, %, 20,00, 2 MTo(py™™ ", e i ™ piiniy oo, i

SU;M [A<x1,."sxl,yla'”7ymazla”'7zn>'M]-
(iii) [/\<x19” .,xm>‘M]°<[A<Zl,' * ‘9zn>‘ Nl]y' * ',[A(Z],‘) 'azn>'Nm]>
SU:;M [A<Zl’. ' ‘,Z,,)'M[Xl," '7xm::N19' st]]

Proof. The proof of (i) is easy and therefore is omitted.

(ii) The proof is by induction on the structure of M. We treat only the essential
case: M = Ax- M,. The other cases are straightforward. By (i) we can assume that x
is not contained in {x,, -, X;, Y1, " ", Vm» 215" * * 5 Zn}:

I+m+n I+m+n I+m+n I+m+n
[/\<x1,"',X,,Zl,'",Z,,)‘(/\X'Ml)]"(p P sPi+m+15"" " 5 Pl+m+n
— I+m+n I+m-+n I+m+n I+m+n
=A([/\<xla' X, 2y, Znax> Ml]) <P Y 4 sPlem+1s" " " 5 Pl4m+n
SUBM A([A(X], X, 21,y 2y x> : Ml]
I+m+n+1 l+m+n+1 I+m+n+1 I+m+n+1 I+m+n+1
°(p; R 4| Lemtl >t s Plimen s Plemini1)

<oe” AMACGe, = XL, Y0, Yms 215, 5 2o, X) - M]) (by induction hypothesis)
=TAXL, X0 Vis s s Z1s s s 20) - (AX - M)].
(iii) The proof is by induction on the structure of M. When M = Ax- M|,
(A, e Xm) - (A M)Tod[A(zy, - 2 vy z0) - Nab, oo [z, 0 -+, 20) - N D)
o AR, X, X Mo Az, 2) - NiTo(pi™, oo pi™,
Sz,) Ny 1o (py ™ pn ™, piid)
Soe AMIACx, = X, X) - Mo ([A(zy, - - o, 20, X) - N,
Mz, 2, X)) s N L [z, - o 0, 2, %) - xD)) - (by (i)
—— A([Azy, ", Za, X)) M[Xy, X =Ny, -+, N1

SUBM

SUBM
(by induction hypothesis)
=[Mzy, -,z (Ax- My)[xy, - -+, X = Nyy oo o, Ny I
The other cases are straightforward. 0
6. Relationship between CCLMpB and ABm. Now we are in a position to state the
theorems that describe the relationship between the terms and reductions of the two

systems CCLMp and ABm, in terms of the two translation algorithms of the previous
section.

86 H. YOKOUCHI AND T. HIKITA

First, we show that the two translation algorithms preserve the reduction relations
in CCLMgB and ABm.

THEOREM 6.1. IfM—;» N, then [A{z,, **,z,) M]—2— CCLMB [A{zy, :, 2z, N]
Proof. The proof is by induction on the deﬁmtlon of M ——> N. We treat only
the B-rule. The other rules are clear:

[ACzy, - - -, za) - (Ax - M) M,]
=App o (A([A(zy, " -+, 2o, x) - Mi]), [M (24, -+, 24) - M)
W[A(zla e ,Z,,,X)‘ M1]°<P;’a e ap:’[A<zl’ T ’Zn> : MZ])

=[Mzy, 0,z) Mi]o{[A 2y, -0 z0) s z1], 0 0 0,
[ACzi, - -y zn) - 2 [AC20, 0 0, 20) - M)
<oen [A(z1, 7+, z.) - Mi[x=M,]] (by Lemma 5.1(iii)). 0
THEOREM 6.2. Let F and G be n-ary terms of CCLMB. If F——> G then
F*[N,, -, N,]—B—> G*[N,, s N.1. In particular, if F-g5o G then
F*[Nl’ s N, 1=G*[Ny, - - N,.]-
Proof. The proof is by induction on the definition of F > 5 G
Case 1. F=A(H) (Hy,* -, H,)—> G=A(Ho(H,o{(p{*", -+, pn™h, -
H, o (pi™, - p™), pai)-
F*[Ny, -+, N,J=Ax- H[H[Ny, -+, N1, -+, Hi[Ny, - - -, N, x]
=G*[N,,- -+, N,].
Case 2. F=App°(A(H,), Hy)—> G=H,°(p}, ", pn, H)).
F*[Ny, -+, N,J=(x- Hf[Ny, "+, Ny, x)(H3[Ny, - -+, N, 1)
= HiIN, -+, N, HE[N,, -+, N,]]

=G*[N,, -, N, 1.
The other cases are similar and omitted. 0
Next we examine the situation where a term of ABm is translated into CCLM§B
and then the resulting term is translated back to ABm.
THEOREM 6.3. [A(z;, -, z.) M]*[z,, :*, z.]= M.
Proof. The proof is by induction on the structure of M. When M = Ax- M,,
[Azi, ooy z0) MT*[zy, - -, 2,] = (A(IXCzy, - 2 0, 20, X) - MAD))¥ (2,0 -, 2]
=Ax-[Mzy, 0, 20, X) - M D¥[20,00, 20, X]
=)Ax- M, (byinduction hypothesis).
The other cases are similar and omitted. 0
Using this theorem we can show the converse of Theorem 6.1.
COROLLARY 6.4. MT» N if and only if [Xz, -,z M]—7>
[A(zy," ", 2,) NI
Proof. The only-if part is Theorem 6.1. For the if part, suppose the latter reduction.
Then, by Theorem 6.2, we have

[A<Zla' o ,Z,,)' M]*[Zl" : '3zn]T*m>[A(zla' v ,Z,,)‘ N]*[le' : ’,Zn].
Therefore, by Theorem 6.3, M Tﬂi.;.') N.]

CCLMB

7. Church-Rosser property. In this section we prove the Church-Rosser property
of CCLMB as an application of the results in the previous sections.

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 87

First, we examine the translated term [A(z,, - -, z,)+ M] in CCLMB. This term
is of a special form. It contains no subterms of the following forms:
(Fo{Gy, ,Gu))o(Hy, -+, Hy), A(F)°(Gy, - -, Gp), and pi (Fy,- -+, F,). But,
it may contain subterms of the forms: App e (pi, p3 and co(p}, - -, p™), where c is
an n-ary nonspecial constant. These two subterms are generated only by

[A(z1, 25) - zy2,] = App °{p1, p3)
and

Az, s za) ez, o za)]=co(pl, -+, ph)s
respectively. If we replace subterms App e {p3, p3) and co(p}, -+, p" by App and c,
respectively, the resulting term F is in SUBM-normal form. Namely, there is no G
such that F <sosn” O

These observations bring us to the following definitions and theorems.

DerINITION. For each term F of CCLMp, we define F° as the term obtained
from F by replacing all occurrences of subterms App{p}, p3) and co{p}, -, pn)
by App and ¢, respectively, where c is an n-ary nonspecial constant.

Although we define F° for all F, our interest is in the special case where F is
[A{zy, """, z,) - M]. All the lemmas and theorems in §§ 5 and 6 are still valid, even
when we replace [A{(—) - —] by [A(—) - —]°. In particular, we get the following theorem,
an extended version of Corollary 6.4.

THEOREM 7.1. M—)ﬁ;) N if and only if [A(zy, ", 2z,)" M]°E—Cﬁ/{§>
[A(zi, -+, z,) - NT°

Using the translation algorithms between CCLMpB and ABm, and the operation
(—)°, we can define an algorithm that finds the SUBM-normal form of each term of
CCLMB.

DEeFINITION. For each n-ary term F of CCLMB, we define the term norm (F) by

norm(F)—'——'[z\(zl,‘ o ’Zn>' F*[Zla' o ’Zn]]o'

THEOREM 7.2. FW norm (F).

Proof. The proof is by induction on the structure of F.
Case 1. F= App.

norm (App) =[A(z,, z) * 2,2,]°

= (App°(pi, p?)°

= App.
Case 2. F=H°(G,, " +,Gp).

H{(G,, --,G,)
~osn orm (H) e (norm (G,), - - - ,norm (G,,)) (by induction hypothesis)
oo Mz, o,z - HY G20, -, 20,0 -, Gllze, -+, 2, 100°
(by the extended version of Lemma 5.1(iii))
=norm (H °{(G,, -+, G,)).
Case 3. F=A(H). By induction hypothesis, we have
AH) o5 A(norm (H))=norm (A(H)).

The other cases are similar. 0

88 H. YOKOUCHI AND T. HIKITA

By Theorem 7.2, Fﬁ; norm (F), and by definition, there is no G such that

norm (F) —— G. Moreover, if F—— H then H—— norm (H)=norm (F)
SUBM SUBM SUBM

by Theorems 7.2 and 6.2. These mean that norm (F) is the unique SUBM-normal form
of F.
Finally we establish the Church-Rosser property of CCLMB.

THEOREM 7.3. If FECL*—W; G, and Fm G,, then there exists H such that

G, —’ccfma H and G, —>CC:‘Mﬂ H.
Proof. First note that ABm satisfies the Church-Rosser property as well as the
ordinary AB-calculus. Suppose F ——— G, and F ——G,. Assume that F is n-ary;

CCLMB CCLMB
so G, and G, are also n-ary. By Theorem 6.2 we have

F*[Zl,."yzn]_ﬁ;_m_)G;k[Zlau'9Zn] and F*[Zla'.'7Zn]—;§r76>2k[zl,“'7zn]'

By the Church-Rosser theorem of ABm, there exists M such that
G;k[Zl,"',Z,,]/\B—*m>M and G?[Zl,”'azn]T*m)M‘
By Theorem 7.1,

norm (GI)FC:TB) [/\<217 T, Zn) ’ M]O

and
norm (G,) W"‘M‘; [Azy, v, 2,0 - M
By Theorem 7.2,
G\ g5 NOrm (G,) and G, sT;;M—’ norm { G,).
Therefore, if we take [A(z,, - -, z,) - M]° for H, we get
GICT*MB)H and szH. O

8. The system CCLp for original categorical combinators. In this section, we return
to the original system CCLB introduced by Curien, and establish the relationship
between CCLB and A-calculus with product in a similar method of the previous
sections. The system CCLgB does not satisfy the Church-Rosser property, but there
are various subsets D on which CCLS satisfies the Church-Rosser property [20], [9].
These facts have been proved directly without help of the Church-Rosser theorem of
A-calculus. Here, we show that a similar result with regard to the Church-Rosser
property for CCLB is immediately derived from the relationship between CCLB and
the A-calculus.

First we present CCLB following [4].

DerFiNiTION. We assume that constant symbols are specified in CCLB. In par-
ticular, they always include special constants: Fst, Snd, Id, and App. Terms of CCLB
are defined as follows:

(1) Every constant is a term.

(2) If F and G are terms, then Fo G and (F, G) are terms.

(3) If F is a term, then A(F) is a term.

DEeFrINITION. We define the binary relation — among the terms of CCLB by the
following rules:

(1) (FoG)cH— Fo(GoH).

(2) Fsto(F, G)— F.

(3) Snd°(F, G)— G.

(4) Ide F— F.

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 89

(5) Feld— F.

(6) A(F)o G — A(F (G ° Fst, Snd)).

(7) App°(A(F), G)— Fe(ld, G).

@®) If F—-G, then HeF—>H-G FeH—Ge°H (F H)— (G, H),

(H, Fy— (H, G), and A(F) — A(G).

When F— G is derived from the rules of CCLB, we write F—C—T G. In
particular, if F— G is derived without rule (7), we sometimes write F— G

We provide notation to represent various terms of CCLS.

Notation.

(i) Fye Fyo+---oF,_,oF, is an abbreviation for F,o (F,o---o(F,_joF,)).

(ii) (F,, F,, F;, - - -, F,)is an abbreviation for (- - - ((F,, F>), F3), - - -, F,). When
n=1, we define (F\)=F,.

(iii) For n=1, define the term Fst” of CCLB by

Fst” = Fsto Fsto - - - Fst.

v

n t?r;es
In particular, when n =0, we define F o Fst’= F for each term F.
(iv) For n=0 and 0=i= n, define the term =] of CCLB as follows:

mo=1d,
mo=Fst" ifnz=1,
m7=SndeFst"" iflsi=n

(v) For n=0 and a term H, define the term I1,(H) of CCLB by II,(H)= H and
M, (H)={{II,(H) - Fst, Snd).

Next we provide a formal system for A-calculus corresponding to CCLB. Extending
the ordinary AB-calculus, we define a rewriting system called ABc.

DEeFrINITION. We assume that constant symbols are specified in ABc. In particular,
they always include special constants: fst and snd. Terms of ABc are defined as follows:

(1) Every variable is a term.

(2) If x is a variable and M is a term, then Ax- M is a term.

(3) If M and N are terms, then MN and (M, N) are terms.

(4) If ¢ is a constant symbol and M is a term, then ¢(M) is a term.

The rewriting rules for ABc are those for the ordinary AB-calculus, together with
the following two:

fst (M, M,)) —> M,, snd ((M,, M,)) — M,.

When M — N is derived in ABc, we write M —— N.

In a similar way to those for CCLMpB and ABm of §5, we define a pair of
translation algorithms between CCLB and ABc. We assume, as before, that there is
given a one-to-one correspondence between the nonspecial constants of CCLB and ABc.

DEFINITION. Let (z,, ", z,) be a nonempty sequence of distinct variables. For
each term M of ABc whose free variables are contained in the set {z,, -, z,}, we
define the term [A(z,, - -, z,) - M] of CCLB as follows:

1) [Azo, ",z zi]=7!, 0= i=n.

(2) [A(zo, "+, za) - MiM,]=Appe([A (2o, " -, Za) - Mi], [A(20," " ", 22) - ML]).

(3) [A(zp, "~ *, za) - (Ax+ M)]=A([A (20, * -, 2, X) - M [x:=x]]), where x'=x

if x is not in {z,, - - -, z,}, otherwise x’ is a new variable.

90 H. YOKOUCHI AND T. HIKITA

(4) [A(zg,*,zay c(M)]=co[A{zg," ", z,)+ M,], Wwhere cis a nonspecial con-
stant.

(5) [/\<ZO, T, Zn> : fSt (Ml)]E FSto [A(ZO’ T, Z”) * Ml]7
[A(zo," "+, za) - snd (M)]=Snd e [A(zo, - - -, z,) - M;].

The above translation algorithm is essentially the same as [M], defined by
Koymans [11, p. 314], and also as Mppy,,....,,) defined by Curien [4, p. 201]. More
precisely, [M], ... x,, of the former corresponds to [A(z, x,, - -+, X,») - M], where z is
a variable distinct from x,, - - -, x,,. But Koymans treats the translation more semanti-
cally. Similarly, Mpgy,.....y,) coincides with [A(z, y,, - - *, yo) - M]. Note that the order
of variables y,,- -, y, is reversed, because Mpp,,,...,,) is based on De Bruijn’s
notation. The significant difference of our translation algorithm from [M], and
Mbpg(y,,---.y, is shown by the following examples:

[A<Z> : Z] = Id’ IIZ]](Z)E ZDB(Z) = Sndy
[A(z) - (Ax- z)]= A(Fst), [Ax - z]¢;y=(Ax - z) pp(;y= A(Snd ° Fst).

Neither [M], nor Mpg,,...,,) can express Id, A(Fst), and so on.

Conversely, we define a translation algorithm from CCLB to ABc.

DEFINITION. For each pair of a term F of CCLB and a term N of ABc, we define
the term F*[N] of ABc as follows:

(1) Id*[N]=N.

N ifNE<N19N2>7
2) Fst*[N]=y_ '
(2) Fst*[N] {fst(N) otherwise.
N, if N=(N,, No),
Snd*[N]=
(3) Snd*[N] {snd(N) otherwise.

) App"[N]= {gtlz\lj\zl) snd (N) Lﬂfl&fg‘ e

(5) c*[N]=c(N), where c¢ is a nonspecial constant.

(6) (Fi, B)*[N]1=(F{[N], F3[ND.

(1) (A(F))*[N]= Ax- F¥[(N, x)], where x is a variable not free in N.
(8) (Fi° F,)*[N]=F{[F5[N]]

The following are basic properties of [A(zy, - * -, z,) - M], similar to Lemma 5.1.
LEmMMA 8.1.

() [Azo,- s zn) MI=[Xz0, -, z0) - Mzo, - -, 2, = 20, "+, Z4]]
(ii) [A<x0’x1’ s Xy 21yttt ,Zn>. M]OH”(FStm)
_ST*;[A(xO’xly'.'yxlyyla'"yymazla”'azn>'M]'
(iil) [A<x07 o 7xm> * M]°<[A<ZO, v 9Zn> : NO]) e 7[A<209 e ,Z,,) : Nm])
S_U*-E)[A<ZO’. : ',Zn>. M[x07. : 'axm:=N0" * .me]]°
(iv) [/\<209..‘72n’x17"'9xm)'M]
=[Nz X1, Xp) - Mzo, -+, 2= (m5)*[2], - - -, (w2)*[2]]].

Proof. The lemma is easily proved by induction on the structure of M. 0

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 91

Now we can present equivalence theorems between CCLB and AfBc, similar to
the results between CCLMpB and ABm.

THEOREM 8.2.

() If M 2> N, then [z, -+, 2) - Ml —i> [M(zo, -+, 22} - N1.

(i) If Fﬁ) G, then F*[N]——A—E? G*[N]. In particular, if FZ*> G then
F*[N]= G*[N].

Proof. (i) The proof is by induction on the definition of M —;"‘;7 N. We treat only
the B-rule. The other rules are clear:

[Azo, -+, za) - (Ax - M) M,]
EAppo <A([A<209 Y5 Zns x>) Ml])’ [A(ZO, T, zn> . MZ])
<o [M 2o, - - vz, X) - Mi]o(1d, [A(20, "~ -, 2,) - M>])

CCLB

=[Az,x) - M[2o, - -, z,=(m0)*[2], - - -, (7)) *[2]]]
o([A(z) - 2], [A(2) - Myl zo, " - -, 2= (m)*[2]), - - -, (o) *[2]1])
(by Lemma 8.1(iv))
oz [M2) - (Mi[x = Myl 20, - - -, 24 3= (70)*[2], - - -, () *[2]]]

(by Lemma 8.1(iii))
=[A{zg, "+, 2z, Mi[x=M,]] (byLemma 8.1(iv)).

(ii) The proof is by induction on the definition of Fﬁ G. When F=
App°(A(F,), F;) and G= F,~(1d, F,),
(App °(A(Fy), F,)*[N]= (Ax - F[(N, x)])(F{[N1])
5= (FTUN, x)])[x = F[N]]
—5 FI(N, FAIND]
= (F, °(ld, F;))*[N].

Here note that, in general, (G*[M])[y:= M'] —;\—é;—) G*[M[y:= M']], which is easily
proved by induction on the structure of G.

The other rules are similar and omitted. 0

Theorem 6.3 is somewhat complex in the case of CCLB and ABc. As an abbreviation
of terms (- -{N;,Ny),N3), -, N,) of ABc, we sometimes write
(N, N,, N5, - -+, N,). When m =1 we define (N,)= Nj,. It is certain that

[A<203 Y Zn) . M]*[<203 T, Zn)]/_;c) M‘

But, unfortunately, [A{zq,"* ', z,) " M1*[{z0, ‘-, z,)] and M are not generally
identical. For example,

[A(z) - fst ((z, z))]*[z] = z.

This is due to the following two different origins of the special constants fst and snd
of ABc appearing in [A(zq, - * -, z,) - M1*[{z0, - -+, z,)]: (1) originally contained in M,
and (2) newly introduced.

We can overcome this difficulty of distinguishing these two kinds of fst and snd
by extending CCLB and ABc. We define the extended CCLB by adding two constants
FSt and Siid, and two rewriting rules: Fste (F, G) — F and Sid ° (F, G) — G. Similarly,
the extended ABc is defined by adding two constants f§t and sid, and two rewriting
rules: f§t ((M, N)) - M and siid ((M, N)) — N. The translation algorithms between

92 H. YOKOUCHI AND T. HIKITA

the extended CCLB and ABc are defined so that FSt and Siid correspond to f§t and
snd, respectively. The difference between Fst and FSt affects only the translation
algorithm (—)*[—]. For example, Fst*[(N;, N;]= N, but F§t*[(N,, Ny)]=
fst ((N;, N,)). For each term M of ABc, we define M as the term obtained from M
by replacing fst and snd by f§t and siid, respectively. Then, we get the following theorem.

THEOREM 8.3. [A(zo, -, z,) - M1*[{z0, - * -, z2)]= M.

Proof. The proof is similar to that of Theorem 6.3. a

From Theorems 8.2 and 8.3, we get the following corollary.

COROLLARY 8.4. Mﬁ) N if and only if [Xzo, ", 2Za)- M]?"‘L?
[A(zo, -+, z,) NI

Proof. The proof is similar to that of Corollary 6.4. Note that Lemma 8.1 and
Theorem 8.2 still hold for the extended CCLB and ABc. 0

Next we examine the Church-Rosser property of CCLB. In § 7, we defined (—)°
and norm (—) on terms of CCLMB. Similar operations can be defined for CCLB.

DeriNITION. For each term F of CCLB, we define F° as the term obtained from
F by replacing every subterm coId in F by ¢, where ¢ is a constant.

DeriNITION. For each term F of CCLB, we define the term norm (F) of CCLB by

norm (F)=[A(z) - F¥[z]]°.

For a term M of ABc, each subterm coId appearing in [A(z,, " -, z,) - M] is
generated only by [A(zy) - ¢(z5)]= c o Id. Similarly to the case of CCLMB, Lemma 8.1,
Theorems 8.2, 8.3, and Corollary 8.4 still hold, even when we replace [A(—) - —] by
[A{(—) - —]"

Theorem 7.2 is troublesome. Unfortunately, the reduction F SULB> norm (F) does
not generally hold in CCLB and ABc. For example,

norm (A(Id)) = A((Fst, Snd)).

We can only prove that F o Id = norm (F) if App in F appears only in the form
App ° (F,, F,). However, this cannot be used to prove the Church-Rosser property of
CCLB, and actually CCLB does not have the Church-Rosser property. The following
theorem shows that CCLB satisfies the Church-Rosser property if we restrict terms to
a certain subset.

THEOREM 8.5. Let F be a term that satisfies the condition: F' —=—> norm (F') for

any F' such that FC—C*LB—> F' . IfF ﬁ G, and F —(# G,, then there exists H such
that G, —CC*TB) H and GzTiﬁ) H.

Proof. The proof is similar to that of Theorem 7.3. 0

This theorem suggests that norm (F) is the key to examining the Church-Rosser
property of CCLB. Actually, norm (F) can be defined directly, and the Church-Rosser
theorem on restricted terms for CCLB is proved without using the theorem for
A-calculus [20]. In [20], various sets of terms that satisfy the condition of Theorem
8.5 are concretely defined. We shall present a set of such terms in § 9.

9. Embedding of CCLMp into CCLB. We show that CCLM is characterized as
a subsystem of CCLB. First we examine the relations between ABm and ABc. Then,
using the results in the previous sections, we translate these relations to those between
CCLMpB and CCLB. In this section, we treat four systems ABm, ABc, CCLMg, and
CCLB, and assume that nonspecial constants are given in common with these systems.

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 93

To start with, we define a pair of translation rules single (—) and multi (—)
between ABm and ABc, and show that ABm is embedded into ABc. Here we arbitrarily
choose a closed term # of ABc that satisfies the following conditions and fix it such
as, for example, # = Ax - x:

(1) # is in normal form,

(2) # contains no constants, and

(3) # does not contain operator ((—), (—)).

DEFINITION. For each term M of ABm, we define the term single (M) of ABc as
follows:

(1) single (x)=x,

(2) single (M, M,) = single (M,) single (M),

(3) single (Ax - M,)= Ax - single (M,),

(4) single (¢(Ny, - -+, N,,)) = c({#, single (N,), - - -, single (N,,))), where ¢ is an

n-ary nonspecial constant.

The resulting term by the translation single (—) has a special shape, that is
characterized by the following definition.

DEFINITION. A term M of ABc is said to be stable when M satisfies the following
conditions:

(1) M does not contain fst nor snd.

(2) Every constant ¢ in M appears only in the form c¢((#, Ny, - -, Np)).

(3) The operator {(—), (—)) appears only in the form of (2).

Note that single (M) is always stable for every term M of ABm.

DEerINITION. For every stable term M of ABc, we define the term multi (M) of
ABm as follows:

(1) multi (x) = x,

(2) multi (M, M,)=multi (M,) multi (M,),

(3) multi (Ax - M,;)= Ax- multi (M,),

(4) multi (c((#, Ni, -+, N,)))=c(multi (N,), - - -, multi (N,,)), where ¢ is a

nonspecial constant.

The following are basic properties of the translation rules single (—) and multi (—).

LEmMMA 9.1.

(i) single (multi (M))= M for every stable term M of ABc.
(ii) multi (single (N))= N for every term N of ABm.
(iii) Let M T;T) N. If M is stable then so is N.
(iv) Let M and N be stable terms of ABc. Then, M T;» N if and only if
‘multi (M) —)\—gzmulti (N).
v) M wLm> N if and only if single (M) T;> single (N).

Proof. The proof is simple and therefore is omitted. 0

Next, using the above translation rules between ABm and ABc, we define a pair
of translation rules between CCLMB and CCLB.

DEeFINITION. For each term F of CCLMB, we define the term single (F) of CCLB
by

Single (F)E [A<207 Z1y "t T, zn> : Single (F*[Zla Y zn])]o'

The translation rule for the inverse direction from CCLB to CCLMp is defined
on a restricted set of terms of CCLB. The following definition characterizes terms of
CCLRB that correspond to stable terms of ABc.

DerINITION. Let n be a nonnegative integer, and let z,, - - -, z, be distinct vari-
ables. Aterm F of CCLS is said to be n-stable when F satisfies the following conditions:

(1) F*[(zo," -, z,)] is stable in ABc, and

94 H. YOKOUCHI AND T. HIKITA

(2) F*[{zo," ', z,)] does not contain z,.
DEerFINITION. For each n-stable term F of CCLB, we define the n-ary term
multi, (F) of CCLMB by

mUItin (F)E [A(le Y Zn) . mUIti (F*[<20, 21,0, Zn)])]o‘

Note that F*[{z,, z;, " * -, z,)] does not contain z, so that the right-hand side
expression is well defined.

The following theorem shows that multi,, (—) and single (—) preserve reductions
in CCLMB and CCLg.

THEOREM 9.2.

(i) Let F be an n-stable term of CCLB. If Fc_c*_u? G, then G is n-stable and

multi, (F) W*M‘; multi,, (G).

(ii) IfFEf*W G, then single (F) TC*F) single (G).

Proof. (i) Suppose that F is n-stable and that F —CC*L—B) G. Then, by Theorem
8.2(ii),

F¥l(z0, 21, 2] 52> G¥[(z0, 210+, 220
So, G is n-stable, too:
F[(z0, 21, s 2] 5> G20 210+ 2]
o multi (F*[(zq, z;, -, z,)]) /_[:n? multi (G*[{z9, z1," * *, z,)]) (by Lemma 9.1(iv))
< multi, (F) —"—> multi,, (G) (by Theorem 7.1).

CCLMB

(ii) Fwp ©
=F*z, -+, z,] w—*m> G*[z,,"+*,z,] (byTheorem6.2)
Ssingle (F*[zy, +* +, 2,]) A—;c-a single (G*[z;,- -+, z,]) (by Lemma9.1(v))
& single (F) —— single (G) (by Corollary 8.4). a

CCLB
Now we further examine the properties of n-stable terms and show that
F —S# norm (F) for any n-stable term F of CCLB. Therefore, n-stable terms satisfy
the condition of Theorem 8.5, and CCLB satisfies the Church-Rosser property on
n-stable terms. For the proof, we use a translation norm® (—) on terms of CCLS,
which is introduced in [20]. Moreover, norm* (—) coincides with €(—) defined in [9].
DEerINITION. For each term F of CCLB we define the term norm* (F) as follows:

(1) norm* ((F,° F,) o H)=norm* (F,° (F,° H)).
(2) norm* (A(F;)° H)= A(norm™* (F, o (H o Fst, Snd))).

(3) norm* ({F,, F,)o H)={(norm* (F, > H), norm* (F,° H)).

H, if norm* (H)=(H,, H>),
(4) norm™ (Fste H)={ Fst if norm* (H)=1d,

Fstonorm* (H) otherwise.

H, if norm* (H) =(H,, H,),
(5) norm* (Sndo H)={ Snd if norm* (H)=1d,

Snd o norm™* (H) otherwise.

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 95

(6) norm* (Ide H)=norm* (H).
c if norm* (H)=1d,

7) norm* (co H)= {
™ () conorm* (H) otherwise,

where c is a nonspecial constant or App.
(8) norm* (A(F,))= A(norm* (F,)).
(9) norm* ((F,, F,)) = (norm* (F,), norm* (F,)).
(10) norm™* (¢)= ¢, where c is a constant.

The above definition is due to transfinite induction. Let n,, n,, n; be the numbers
of subterms in the form A(H), (H,, H,), and H, » H, appearing in F, respectively. Let
n, be na (F), where na (—) is defined as follows. For each term G, if G is in the form
(G,°G,)° G;, then na(G)=na(G,°G,)+1, otherwise na(G)=0. The above
deﬁn4ition of norm* (F) is by transfinite induction on @* - n,+ 0> n,+ - ny;+n, up
to w".

If we write the definition of norm (F) directly, it resembles norm® (F). The
difference is in the cases where F = A(F,) and F= App° H. When F = A(F;), we have
norm (F)= A(norm (F, (Fst, Snd))). When F = App° H and norm (H) is not Id nor
in the form (H,, H,), the term norm(F) is not Appecnorm(H) but
App e (Fstenorm (H),Sndenorm (H)). Note that F o norm* (F), while
F > norm (F) is not generally true.

LEMMA 9.3. If F is a k-stable term of CCLP for some k, then
norm* (F)E[)‘<ZO’ T, Z,,> * F*[<ZO’ Y zn)]]o

for every n=0.

Proof. By definition, norm* (F) must be in the form c¢,o: ¢, H, where
¢, "' ,C, are constants and H is either a constant, A(H,), or (H,, H,). Since
F 5> norm* (F), by Theorem 8.2(ii) we have F*[N]= (norm* (F))*[N] for any
term N of ABc. Thus, by condition (1) of k-stability, App in norm™* (F) appears only
in the form Appe°(H,, H,). Assuming only this and condition (2) of k-stability, we
will prove the lemma. The proof is by induction on the structure of norm* (F).

Case 1. H is a constant. Then norm* (F) is in the form ¢,o - - o ¢ o ¥, where
1siskl=m-k+iand ¢, -, ¢ are constants other than App and Id. This implies
the lemma.

Case 2. H=A(H,). Then ¢,, - -, ¢, are constants other than App and Id:

(A (zo," " -, za) - F*[{20," ", z)]]°
=cio oo A[A(zo, " " ", 2, X) - HY[(20," " *, 24,)]]°)
=¢ o0, A(norm* (H,)) (byinduction hypothesis)
=norm* (F).

Note that H, is (k+1)-stable, since F is k-stable.
Case 3. H=(H,, H,). Then ¢,, - - -, ¢,,—, are constants other than App and Id,
and ¢, is either a nonspecial constant or App:

[’\(ZOa t T, Z,,) : F*[(ZO’ Tt Z,,)]]O
=EGorroly °<[)‘<20a Y Z,,) * H;k[(ZO, T, Zn>]]°,
[A<ZOa T, Zn> : H?[(ZO’ T, Zn)]]°>

96 H. YOKOUCHI AND T. HIKITA

=c ooy o(norm* (H,), norm* (H,)) (by induction hypothesis)
= norm™ (F). 0

THeEOREM 9.4. If F is an n-stable term of CCL for some n, then F <oy horm (F).

Proof. By definition, F - norm* (F). So, by Lemma 9.3, we have
F {7 norm (F).]

As explained in § 7, every term F of CCLMf has the unique SUBM-normal form
norm (F). From Theorem 9.4, similarly, it follows that every n-stable term G of CCLgB
has the unique SUB-normal form norm (G).

Finally, we establish the relationship between single (—) and multi, (—).

THEOREM 9.5. (i) For every n-ary term F of CCLMB, single (F) is n-stable and
multi, (single (F))=norm (F).

(ii) For every n-stable term G of CCLB, single (multi, (G))=norm (G).

Proof. (i) Since single (F*[z,, - - -, z,]) does not contain the special constants fst
and snd, by Theorem 8.3 we have

(single (F))*[{z0, 21, * *, z,)] =single (F*[z,, - - -, z,]).
So single (F) is n-stable, and multi, (single (F)) can be defined. Moreover,
multi, (single (F))=[A(z, "+, z,) - multi (single (F*[z,, -, z,]))]°
=[A(zy,"*, 2,0 F¥[zy," -+, 2,]]° (byLemma 9.1(ii))
=norm (F).

(ii) Since (multi, (G))*[z,," -, z,]=multi (G*[{zy, z;," * *, z,)]) by Theorem
6.3, we get

single (multi, (G))=[A(z,, z,, - *, 2,) * single (multi (G*[(zy, z;, " - -, z,)]))]°
=[Azo, 21, "+, 22) - G*[{20, 21, +, z,)]]° (by Lemma 9.1(i))
=norm (G) (by Lemma 9.3).]

Theorem 9.5 means that the equivalence classes generated by su_'is“ﬁ on n-ary terms

of CCLMp exactly correspond to the equivalence classes generated by <oy on n-stable
terms of CCLB through the maps single (—) and multi,, (—). From this and theorem
9.2, we conclude that CCLMp is embedded into CCLB by single(—).

Acknowledgments. The authors are grateful to the referees for useful comments.

REFERENCES

[1] J. BAckus, Can programming be liberated from the von Neumann style? A functional style and its algebra
of programs, Comm. ACM, 21 (1978), pp. 613-641.

[2] H. P. BARENDREGT, The Lambda Calculus—Its Syntax and Semantics, revised ed., North-Holland,
Amsterdam, 1984.

[3] G. CousINEAU, P.-L. CURIEN, AND M. MAUNY, The categorical abstract machine, Sci. Comput.
Programming, 8 (1987), pp. 173-202.

[4] P.-L. CURIEN, Categorical combinators, Inform. and Control, 69 (1986), pp. 188-254. .

[5] , Categorical Combinators, Sequential Algorithms and Functional Programming, Pitman, London,
1986.

[6] , The strong calculus of closures, or Ac-calculus, Preprint, 1989.

[7]1 Y. FUTAMURA, Partial computation of programs, Lecture Notes in Computer Science, 147, Springer-
Verlag, Berlin, New York, 1983, pp. 1-35.

A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS 97

[8] T. HARDIN AND A. LAVILLE, Proof of termination of the rewriting system SUBST on CCL, Theoret.
Comput. Sci., 46 (1986), pp. 305-312.

[9] T. HARDIN, Confluence results for the pure strong categorical logic CCL. A-calculi as subsystems of CCL,
Theoret. Comput. Sci., 65 (1989), pp. 291-342.

[10] S. HAayAsHI, Adjunction of semifunctors: categorical structures in nonextensional lambda calculus,
Theoret. Comput. Sci., 41 (1985), pp. 95-104.

[11] C. P. J. KOYMANS, Models of the lambda calculus, Inform. and Control, 52 (1982), pp. 306-332.

[12] J. LAMBEK, Functional completeness of cartesian categories, Ann. Math. Logic, 6 (1974), pp. 259-292.

[13] J. LAMBEK AND P. J. ScOTT, Introduction to Higher Order Categorical Logic, Cambridge University
Press, Cambridge, 1986.

[14] F. W. LAWVERE, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A., 50 (1963),
pp. 869-872.

[15] R. D. LiNs, On the efficiency of categorical combinators as a rewriting system, Software Pract. Exper.,
17 (1987), pp. 547-559.

[16] A. R. MEYER, What is a model of the lambda calculus?, Inform. and Control, 52 (1982), pp. 87-122.

[17] A.OBTULOWICZ AND A. WIWEGER, Categorical, functorial and algebraic aspects of the type-free lambda
calculus, Universal Algebra and Applications, Banach Center Publications, Vol. 9, 1982, PWN,
Warsaw, pp. 399-422.

[18] D. S. ScoTT, Relating theories of the A-calculus, in To H. B. Curry: Essays on Combinatory Logic,
Lambda-Calculus and Formalism, J. P. Seldin and J. Hindley, eds., Academic Press, New York,
London, 1980, pp. 403-450.

[19] H. YOKOUCH]I, Retraction map categories and their applications to the construction of lambda calculus
models, Inform. and Control, 71 (1986), pp. 33-86.

, Church-Rosser Theorem for a rewriting system on categorical combinators, Theoret. Comput.

Sci., 65 (1989), pp. 271-290.

[20]

SIAM J. COMPUT. © 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 98-123, February 1990 006

THE INVERSES OF BLOCK HANKEL AND BLOCK TOEPLITZ
MATRICES*

GEORGE LABAHNt, DONG KOO CHOI#, AND STAN CABAY$§

Abstract. A set of new formulae for the inverse of a block Hankel (or block Toeplitz) matrix is given.
The formulae are expressed in terms of certain matrix Padé forms, which approximate a matrix power series
associated with the block Hankel matrix.

By using Frobenius-type identities between certain matrix Padé forms, the inversion formulae are shown
to generalize the formulae of Gohberg-Heinig and, in the scalar case, the formulae of Gohberg-Semencul
and Gohberg-Krupnik.

The new formulae have the significant advantage of requiring only that the block Hankel matrix itself
be nonsingular. The other formulae require, in addition, that certain submatrices be nonsingular.

Since effective algorithms for computing the required matrix Padé forms are available, the formulae
are practical. Indeed, some of the algorithms allow for the efficient calculation of the inverse not only of
the given block Hankel matrix, but also of any nonsingular block principal minor.

Keywords. Hankel matrix, Toeplitz matrix, Padé fraction, power series, Padé form, Yule-Walker
equation

AMS(MOS) subject classifications. primary, 15A09; secondary, 41A21

1. Introduction. Let

Gyer - a,
(1.1) H,.=| :

a,, * Qmrn—

be a nonsingular block Hankel matrix with coefficients from the ring of p X p matrices
over a field." The special structure of Hankel matrices has resulted in a number of
closed formulae for the inverse of H,, .

When p =1 (the scalar case) well-known formulae of Gohberg and Semencul [14]
give H,., in terms of only the first and last columns of the inverse. Gohberg and
Krupnik [15] give a formula for the inverse in terms of the last two columns of H,,.,.
Ben-Artzi and Shalom [3] give a series of inverse formulae, including one for determin-
ing the inverse once two adjacent columns, along with the last column, of the inverse
are known.

When p > 1, additional problems are encountered in obtaining a closed formula
for the inverse of a block Hankel matrix. When the coefficients of H,,, come from a
noncommutative algebra there are closed formulae due to Gohberg and Heinig [16].
These are given provided the first and last columns together with the first and last rows
of the inverse are known.

All of the above formulae depend on the ability to perform certain bordering
operations that lend themselves well to matrices with a Hankel structure. However,
these bordering operations require the imposition of certain additional restrictions on

* Received by the editors January 14, 1988; accepted for publication (in revised form) May 24, 1989.

+ Department of Computing Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl.

1 Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1.

§ Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1. The
research of this author was partially supported by Natural Sciences and Engineering Council of Canada
grant A8035.

' All results hold, with minor modifications, for block Toeplitz matrices.

98

INVERSES OF BLOCK HANKEL 99

H,, ,.Forthe Gohberg-Krupnik formula, the matrix H,,_, ,-, must also be nonsingular;
whereas, for the Gohberg-Semencul and Gohberg-Heinig formulae, the matrix H,, ,—,
must be nonsingular. Inverse formulae are then also given for the relevant submatrices.

In the case of the scalar Gohberg-Semencul formulae, there is a standard technique
for overcoming the extra requirements. When H,, , is nonsingular but H,, ,, is singular,
a larger nonsingular Hankel matrix, H,, .., is created. An inverse formula is then
obtained by using the formulae of Gohberg-Semencul for H,, , and H,, ,+, (cf. Gohberg
and Semencul [14], or Iohvidov [19]). For the nonscalar case, however, there is no
known similar method for overcoming the added restriction in the Gohberg-Heinig
formulae.

The primary contribution of this paper is a set of new closed formulae for H},,.
By avoiding bordering techniques, we require only that H,,, be nonsingular. When
p =1, one of the formulae agrees with that obtained by Choi [12].

The representations for H;,!, depend on the concept of a matrix Padé form (Labahn
and Cabay [22]) for the matrix polynomial

m+n

(1.2) A(2)= % az’.

These matrix Padé forms are determined from solutions to equations of a Yule-Walker
type. Central to our approach are commutativity relationships that are shown to exist
between certain matrix Padé forms. These commutativity relationships allow us to
overcome the traditional limitations imposed when using bordering techniques. Indeed,
the conditions that we impose are both necessary and sufficient for the existence of
an inverse.

When we add the condition that H,, ,_, also be nonsingular, certain Frobenius-type
identities for matrix Padé forms are used to show that our formulae yield the formulae
of Gohberg and Heinig. On the other hand, when we add the condition that H,,_, ,-,
be nonsingular, a different set of Frobenius-type identities applied to our results yields
inverse formulae, which in the scalar case corresponds to the Gohberg-Krupnik
formulae. Finally, using somewhat different techniques, we show how our inverse
formulae provide natural generalizations of the results of Ben-Artzi and Shalom to the
nonscalar case.

A major advantage of a closed inverse formula is that it allows for efficient
algorithms to calculate the inverses of Hankel matrices. This efficiency comes both in
the cost complexity of calculating the inverse and also in the amount of storage required
for the final resulit.

When our inverse formulae are used in conjunction with the MPADE algorithm
of Labahn and Cabay [22], we obtain an algorithm for calculating H ,,,. This algorithm
has many advantages for our situation. It is successful without any preconditions
placed on the original power series. As a by-product, we obtain inverses for all the
principal minors of H,,, that are nonsingular. Also, it is iterative on n, allowing cost
savings in implementation. The complexity of the MPADE algorithm is generically
O(p*n?), although there are pathological cases where it can be as high as O(p*n®)
(for example, when all the principal minors of H,,, are singular). This compares with
other nonscalar methods (cf. Akaike [1], Watson [31], Rissanen [27], Bose and Basu
[5]) that are also of complexity O(p°n?), but that succeed only when all principal
minors are nonsingular. In the scalar case, however, the cost complexity of MPADE
is O(n?), regardless of the types of singularities found in H,, ,. This compares favorably
with the method described by Rissanen [28] that is of complexity O(n?) and succeeds
in the degenerate case. The O(n’) methods of Trench [30], Watson [31], Zohar [33],

100 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

and Kailath, Kung, and Morf [20], on the other hand, fail whenever a principal minor
of H,, , is singular:

When fast polynomial multiplication methods are available, in the scalar case,
the required Padé forms can be calculated by the off-diagonal algorithm of Cabay and
Choi [11] with a complexity of O(n log® n). The algorithm is also iterative on n and
produces the inverses of some of the nonsingular principal minors as a bi-product. As
a result of this, and some other factors, the performance is better than the O(n log” n)
method of Brent, Gustavson, and Yun [6] and Sugiyama [29], both of which also
succeed in the degenerate case. The O(n log® n) methods of Bitmead and Anderson
[4], Ammar and Gragg [2], and de Hoog [18], on the other hand, succeed only in the
nondegenerate case.

In the nonscalar case, fast algorithms can also be used to calculate the required
Padé forms, but under some restrictions. If the block matrix is positive definite (or,
more generally, if the associated power series is nearly-normal (cf. [21])), for example,
and fast polynomial multiplication is allowed, then the inverse formulae can be
calculated using the fast algorithm of Labahn [21] with complexity O(p* - nlog® n).
This algorithm is also iterative and calculates the inverses of some of the nonsingular
principal minors as a bi-product. The algorithm of Bitmead and Anderson, generalized
to the nonscalar case using the formulae of Gohberg and Heinig, is also of complexity
O(p? - nlog® n), but works only in the normal case.

For purposes of presentation, we adopt the following notation. We let D denote
the noncommutative ring of p X p matrices over a field.” The domain of formal power
series with coefficients over D and indeterminate z is denoted by D[[z]]. For any
A(z) e D[[z]], A(z) is formally represented by

(1.3) A(Z)='§ a;z',

where the coefficients a; € D are always written in lower case. The domain of poly-
nomials (finite power series) over D with indeterminant z is denoted by D[z]. Any
polynomial P,(z)e D[z] is represented formally by

(14) P.2)= T pe,

where again the coefficients p; € D are written in lower case. The degree of P,(z) (i.e.,
the largest i such that p; # 0) is denoted by 3(P,(z)).

2. Matrix Padé forms. The inversion formulae derived in §§ 3 and 4 depend on
the concept of a matrix Padé form for a matrix power series. This is a multidimensional
generalization of scalar Padé forms (cf. Gragg [17]). Let

@1 A(z)=Y agz'e Dl[z]]
i=0

be a formal power series with coefficients from the ring D of p X p matrices over some
field. For nonnegative integers m and n, let

(2.2) Un(z)=% uz', V,(2)=Y vz' € Dlz]
i=0 i=0
be p X p matrix polynomials.

2 All the results of this paper can be presented in the more general setting where D is an arbitrary
noncommutative algebra.

INVERSES OF BLOCK HANKEL 101

DerFINITION 2.1 (Labahn and Cabay [22]). The triple (U, (z), V,(z), W(z)) is
defined to be a Right Matrix Padé Form (RMPFo) of type (m, n) for the power series
A(z) if

(I) 3(Un(2))=m, 8(V,(2))=n,

(I1) A(z) - V,(2)=U,(2)=2z"""""W(z), where W(z)e D[[z]], and

(II1) The columns of V,(z) are linearly independent over the field.’

The matrices U,,(z), V,(z), and W(z) are called the right numerator, denominator, and
residual (all of type (m, n)), respectively. O

There is an equivalent definition for a left matrix Padé form (LMPFo). In condition
(IT), multiplication on the right by V,(z) is replaced by multiplication on the left. In
addition, condition (III) is replaced by

(IIT) the rows of V,(z) are linearly independent over the field.

Condition (IT) can be written as follows:

a_, -+ a Uy U,
(2.3) . . ot
A " " Ay Vo Up |
and
Aniy " Ay Ay Un [0
(2.4) . . Sl
Ay Am+y """ Apn 2 _O

Here a; =0 for i <0. The matrix polynomial V,(z) can be determined by solving (2.4),
and then U,,(z) can be obtained from (2.3).

THEOREM 2.2 (Existence of Matrix Padé Forms). For any matrix power series A(z)
and for any pair of nonnegative integers (m, n), there exists an RMPFo and an LMPFo
of type (m, n).

Proof. The result follows from (2.3) and (2.4) by comparing the number of
equations with the number of unknowns. For details see [22]. 0

To distinguish between matrix Padé forms of different types, we introduce the
following notation. For a given pair of positive integers (m, n), the triples
(U,.(2), V.(z), W(z)) and (U%(z), V¥(z), W*(z)) denote an RMPFo and an LMPFo,
respectively, of type (m, n) for A(z). For the same (m, n), an RMPFo and an LMPFo
of type (m —1, n—1) for A(z) are represented, respectively, by (P,-1(z), Q.-1(z), R(z))
and (P%_,(2), Q¥_,(z), R*(z)). For these Padé forms, collectively, condition (II)
becomes

(2.5) A(Z)V,(2)=U,(z)=z""""" W(z),
(2.6) Vi(2)A(2) - Ui(z) =2""""" - W¥(2),
(2.7) A(2)Qu-r(2) = Ppy(2) =2""""" - R(2),
(2.8) T 1(2)A(z) = Ph_i(2)=2""""" - R¥(2).

In § 3, in the case that H,,, is nonsingular, the inverse is given in terms of these four
matrix Padé forms.

THeEOREM 2.3. For a pair of positive integers (m, n), the following statements are
equivalent:

(2.9) det (H,,,) #0,

3 When the leading term v, is nonsingular, then in [22] a RMPFo is called a Right Matrix Padé Fraction
(RMPFr).

102 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

(2.10) det (r,) #0 and det (v,) #0,
(2.11) det (r¥)#0 and det (v¥)#0.

Proof. That (2.9) implies (2.10) and (2.9) implies (2.11) was proved in [22], and
so we show only the converse here. To see that (2.10) implies (2.9), let X =(x;, -, x,,)
be a vector of length np and suppose that
(2.12) X H,,=0.

We shall show that X =0. We accomplish this by showing that (2.12) implies that
x, =0 and

(213) (0, X1, xn—l) * Hm,n =0'
By repeated application of this property, it then follows that x,_,=-:-=x,=0, and
so X =0,
First observe that equating coefficients of z', for m+1=i=m+n, in (2.5) yields
Uy am+l
(2.14) Huu | 2 [== ¢ oo
Uy Am+n

where v, is invertible since we are assuming statement (2.10). Similarly, equating
coefficients of z', for m=i=m+n-1, in (2.7) yields

0

qn—l N

2.15 H,.-| - |=|:
(2.15) =
9o Yo

0
: qn—l
(2.16) Xy ro= X | o f =X Hy, - [=o0.
To 9o
Since r, is invertible, it then follows that x, =0.
Having shown that x, =0, (2.12) then yields
am—n+2 tee am
(2.17) (X, Xam) | - |=0.
am U Qmn-2
But, from (2.12) and (2.14), we have
am+1 Up
(2.18) (X, %1, 0) 0| 1 | vo==X"Hua| 1 [=0.
Am+n Uy
Since v, is invertible, (2.18) implies that
Am+1
(2.19) (X, LX) | o [=0.

Am+n—1

INVERSES OF BLOCK HANKEL 103

Equations (2.17) and (2.19) imply that

Am—n+2 """ Aui
(220) (xl’ Ty, xn—l)) : =O’

ap, * Amtn-

which is equivalent to (2.13).

Thus, we have shown that (2.10) implies (2.9). A similar argument shows that
(2.11) implies (2.9). 0

Theorem 2.3 has important computational significance since the singularity of
H,,, can be detected simply by recognizing a singular r, or a singular v,. If both r,
and v, are nonsingular, then we have Theorem 2.4.

THEOREM 2.4. If det (H,,) # 0, then the matrix Padé forms identified by (2.5)-(2.8)
are unique, except for the specification of the nonsingular matrices v,, v, 1o, and rg.

Proof. We refer the reader to Theorems 3.2 and 3.3 in [22] for a detailed proof
of this result. 0

As a consequence of Theorem 2.4, it can be assumed without loss of generality that

(2.21) vo=vg=ry=re=1

This nonrestrictive assumption simplifies the presentation of subsequent results.

The key relationship between matrix Padé forms that enables the presentation of
the inverse of H,,, in §§ 3 and 4, is given by Lemma 2.5.

LEMMA 2.5. Let det (H,, ,) # 0. Then the matrix Padé forms identified by (2.5)-(2.8)
and normalized according to (2.21) satisfy

S i bviton B M
(229 :ZL"((zz)) 2’"8][_3*53 —Z*',"{(’z()z)]=2'"*"“[é (,)]
e LA VTHAS S8l
e [0 WS TLAS W

Proof. Multiplying (2.5) on the left by Q¥_,(z) and (2.8) on the right by V,(z),
and subtracting the first from the second, we obtain
$1(2) - Un(2) = Ph_(2) - Vi(2) = 2" (R¥(2) Vu(2) = 22 Q-1 (2) W(2))

(2.26) =z""" " rdv,

— zm+n—11.

In (2.26), we have used the normalizing condition (2.21) and the fact that the left-hand
side, and consequently the right-hand side, is a matrix polynomial of degree at most
m+n—1.

Multiplying (2.5) on the left by Vi¥(z) and (2.6) on the right by V,(z), and
subtracting the second from the first, we obtain

—Via(2) - Un(2)+ UR(2) - Vo (2) =2""" - (Vi(2) W(2) = WH(2) V,(2))
=0.

(2.27)

104 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

In (2.27), the last equality is true because the left-hand side, and consequently the
right-hand side, is a matrix polynomial of degree at most m + n.
In a similar fashion, (2.7), (2.8), and (2.21) yield

rl(2)Ppi(2) = Ph_1(2)Quoi(2) = Zmnh (Q#-1(z)R(z) — R*(2)Qu-:(2))
=0,

(2.28)

whereas, (2.6), (2.7), and (2.21) give
—Vi(2)Pooi(2)+ Uk(2)Qui(2) = 2" - (VE(2)R(2) = 22 W*(2) Qu1)

m+n—II

(2.29)
=z
Equations (2.26)-(2.29) together comprise (2.22). Equation (2.23) follows directly
from (2.22), since matrix inverses are two sided.
Equations (2.26) also gives

(2.30) 2" (R¥(2) V,(2) = 22QF 1 (2) W(2)) = 2"t - ,
from which we obtain

(2.31) R*(2)V,(2) - 2?Q} ((z2) W(2) =1
Similarly, from (2.27), we obtain

(2.32) VE(2)W(z) — W*(z)V,(z)=0.

From (2.28), we obtain

(2.33) n-1(2)R(z) = R*(2) Qu-1(2) =0,

and (2.29) gives

(2.34) V¥(z)R(z)— 22 W*(2)Q,_, = L

Equations (2.31)-(2.34) comprise (2.24). As before, (2.25) follows from (2.24), since
matrix inverses are two-sided. 0

3. The off-diagonal inverse formula. The main result of this paper is Theorem 3.1.

THEOREM 3.1. Let H,,, be the block Hankel matrix (1.1). If there are RMPFos
and LMPFos of type (m—1,n—1) and (m, n) for A(z) satisfying the normalizing
condition (2.21), then H,, , is nonsingular with inverse

- Gn—2 -+ qo O .
EEREEEY RN e v - of
(31) H.L=| .- O T oo
: : G Lo
| Yo qi‘:—l_ 00 v’,’,‘_
or, equivalently,
- - *- .. n¥ 0-
G v¥ | el v, q.n 2 ‘ 90
(32) H,.=| : -. o i L
) : 90
T Iloal]®

Proof. Using
Un(2)Q%-1(2) = P i(2) Vi(2) = 2",
which is from (2.23), we can equate coefficients of z', m=i=m+n—1, to obtain
Up ** Umenir | | GF=1 -+ 48 Pm-1+++ Pm-n| | U -+ 0
(3.3) S N T T R B

k
Up qn-1 Pm—1 Un

INVERSES OF BLOCK HANKEL 105

Similarly,
Va(2)Q5-1(2) = Qu_i(2) V3i(2) =0,
also from (2.23), yields

o |[g1 -+ gF Gn1 || V5 -+ OF
(3.4) . . : - * : E :O‘
Uy 0+ Uy qr- dn-1 -+ 9o v}
Now, from (2.7), we obtain
qn2--+q O
. : . ° Pm—1 - pm—n qn—l
(35) Hm,n : . to = .. . _Hm-n,n : :
o - " op q q
0 m—1 n—1 0

Observe that, for 1=i, j=n, the (i, j) component in (3.5) is obtained by equating
coefficients of z”"* /' in (2.7). Similarly, (2.5) yields

Up—y =+ Do Up <+« Up_n+1 Up
(36) Hm,n * E '-' = .. E _Hm—n,n : :
Vo U Uy «++ U

Combining (3.5) and (3.6) and using (3.3) and (3.4), it then follows that
Gn-2 ++-qo 0 %

* * *
Un—1 +++ Vo dn-1 -+ 4o . Vp --- 1]
Hy, i
* 0 *
Do dn— 0 Un
u u) *
m m—n+1 n dn-1 90
= —_Hm——n,n : ;
*
Uy, U, - U qn-1
* *
Pm—1 pm—n qn—l Uy =+ U
(37) - : —'Hm—n,n . . ‘
*
pm—l qn—l st qO Uhp
* * * *
Uy = Upn—n+1 dn-1 -+ qo Pm—1 « Pm-n Uy -+ U
U qn—l pm—l Up
* *
Un dn-1 --- 4o
—Hm—n,n : : : . .
*
Un Uy qn—1
* *
dn-1 Up -+ 1)
. ‘.*
qn—1 - 9o Uh
=1

Thus, H,,, is nonsingular with the inverse given by (3.1).

106 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

The second formula (3.2) for the inverse is proved using (2.6), (2.8), and the
second column of (2.23). a

Remark 1. In the scalar case, (3.1) was first obtained by Choi [12].

Remark 2. The assumptions of Theorem 3.1 can be equivalently replaced by the
requirement that we obtain solutions to

(3.8) Hppn [Gno1, 005 90) =[0,--+,0, 17,
(3.9) [g%-1, -+, 48] Huu=[0,---,0,1],
(3.10) Hypw [0n, 0] = ~[@ms1, "7, Gminot, Gminls
(3.11) (o, 0f] Hpn=—[@ms15 * *, Gmin—1> Qmrn]

where a,,,, can be any p X p matrix. Equations (3.10) and (3.11) are block versions
of the Yule-Walker equations.

4. The antidiagonal inverse formula. Theorem 3.1 provides inverse formulae for
the block Hankel matrix H,,, in terms of RMPFo and LMPFo of type (m—1,n~1)
and (m, n) for the associated matrix polynomial A(z). There are some algorithms (cf.
[6], [24], [29]) that calculate Padé forms along an antidiagonal, rather than along an
off-diagonal path of the Padé table. For this reason, it is useful to provide inverse
formulae in terms of RMPFos and LMPFos of type (m —1, n) and (m, n—1) for A(z).

Let (E,(z), F,_1(z), G(z)) and (E%(z), F¥_,(z), G¥*(z)) be an RMPFo and an
LMPFo, respectively, of type (m, n—1) for A(z). Also, let (B,,_,(z), C,(z), D(z)) and
(B*_,(z), C¥(z), D*(z)) be an RMPFo and an LMPFo, respectively, of type (m —1, n)
for A(z). Then, the following equations are satisfied:

(4.1) A(2)F,-1(2) = E,(2) =2"""G(2),
(4.2) Fi1(2)A(z) - Ef(2)=z"""G*(2),
(4.3) A(2)Cy(2) = Bpi(2) = 27" D(2),
(4.4) C¥(2)A(z) - B _\(z) =z"""D*(z).

COROLLARY 4.1. Let H,, , be the block Hankel matrix (1.1). Then the following are
equivalent:

(4.5) det (H,,,) #0,
(4.6) det (e,,) 70 and det(c,)#0,
4.7) det (eX)#0 and det(c¥)#0.
If any (and therefore all) of (4.5), (4.6), or (4.7) hold, then the inverse is given by
" o)
Cn ff—l“‘ff)k f Ci‘i-l-~-02‘f
(48) H,.= . -/ ,
¢ Cn S5 _fl"'fnﬂ 0 Co i
or, equivalently,
0 fx o
Jocr oo fo e ef] e o fav e Ji
(49 H.L.=| : .- N . M
Jo cx | Co :)_ld

INVERSES OF BLOCK HANKEL 107

where we have normalized the Padé forms so that
(4.10) e.=eX=c,=c¥t=1

Proof. Let af =a,,,_;, for 0=i=m+n, and define a truncated power series
A*(z)=Y"" a}z". Observe that, if

Apnsy """ a,
(4.11) Ho.=| Co)
a,, Apin—i
then
(4.12) H.,=J H,, J
where

=[5

Equating coefficients of z, for m=i=m+n—1, in (4.1), we obtain

em
A I
(4.13) H..| © |=| -
R
From (4.12) and (4.13), it then follows that
[0
fo :
(4.14) Hyn.l - |= 0
S
= em
Thus,
n-—1 X
(4.15) Qu-i(2)= ;Ofn—lﬁzl
is a right denominator of type (m—1, n—1) for A*(z). Similarly, (4.2) yields
(4-16) [f(;ka' : 'af:f—l]H::l,n=[09') .70a e:kn]a
and so
n—1 X
(4.17) Qf—l(z) =X f;k_Hin

i=0

is a left denominator of type (m—1, n—1) for A¥(z).
Next, from (4.3), we obtain

-Cn—l- -am—n-
(4.18) Hpo| @ |=| @ |em

L Co J ...a"‘_l_
and so (4.12) then gives

[Co] _a:+l-
(4.19) Hi l 1= * e

| Cn—1] _a::H-n_

108 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

Thus,
(4‘20) V,,(Z):‘ Z cn‘izi
i=0

is a right denominator of type (m, n) for A*(z). Similarly, (4.4) can be used to obtain

(421) [63‘9 DY C:l:—l]H:fl,n = C:l,‘[afﬁ,] PERY axi-n],
and so
(4.22) Vi(z)= Y ¢k 2’

i=0

is a left denominator of type (m, n) for A*(z). Since det (H},,)#0 if and only if
det (H,,,) # 0, the equivalence of (4.5)-(4.7) now follows from the equivalence of
(2.9)-(2.11).

To prove (4.8), normalize according to (4.10) and substitute (4.15), (4.17), (4.20),
and (4.22) into (3.1) to obtain

.fl"'fn‘l 0 * L %

Cp »ov Cy f(;k"'f:lk—l . Co -+ Cn—1
@23) Hu'=|: ORI IR o
Ca & "O_' c

By using (4.12), (4.8) follows immediately from (4.23). In a similar fashion, (4.9) can
be obtained using (3.2). 0

5. The Gohberg-Heinig inverse formulae. In this and the next section, we compare
our inverse formulae (3.1) and (3.2) with other similar well-known formulae. In terms
of matrix Padé forms of type (m —1, n—1) and (m, n —1), the inverse of H,, , is given
by Corollary 5.1.

COROLLARY 5.1. Let the matrix Padé forms identified by (2.7), (2.8), (4.1), and
(4.2) be given. Then the following statements are equivalent:

(5.1) det (H,,—1)#0 and det(H,,)#0,
(5.2) det (r,) #0 and det(f,) #0,
(5.3) det (r¥)#0 and det (fF)#0.
In addition, if any (and therefore all) of conditions (5.1), (5.2), or (5.3) are satisfied, then
Jocr o S|l ai- o ad
H!.=| -+ .- .
Jo a5
(5.4)
G2+ q OO S, --- fF
- 4o e fr
0 0

where the Padé forms have been normalized by

(5.5) ro=rs=fo=fo=1

INVERSES OF BLOCK HANKEL 109

Proof. We first show that (5.1) implies (5.2). Since det (H,,,)# 0, Theorem 2.3
implies that det (r,) # 0. Since det (H,, ,_,) # 0, Theorem 2.3 also implies that det (f;,) #
0. Therefore (5.1) implies (5.2). In a similar fashion, (5.1) implies (5.3).

To show that (5.2) implies (5.1), let

(5.6) U,(z)=E,(z)—z* Pn_(2)ry"'go,
(5.7) Va(2)=F, 1(2) =z Qu_y(2)10 "' &-
Then, 8(U,,(z))=m and 4(V,(z)) = n. Also,
A(2) Vo (2) = Un(2) ={A(2) F,-1(2) = En(2)} = 2{A(2) Qu-1(2) = Prr-1(2)}15 ' 8o

(5.8) =z"""{G(z) — R(2)ry " go}
— 2" W)
where
(5.9) W(z) =2z"{G(z) - R(2)ry"'go} € DI[z]].

Finally, the columns of V,(z) are linearly independent since from (5.7) vo=f,, and
by assumption f, is nonsingular. Thus, (U, (z), V,(z), W(z)) is an RMPFo of type
(m, n) for A(z), satisfying det (v,) #0. From Theorem 2.3, it follows that H,,, is
nonsingular since both det (ry) # 0 and det (vp) #0. To see that H,,,_, is also non-
singular, observe that

I f;r—l Ap—n+1 """ A1 €m
Am—n+1 " " an, . a a 0
. . . m—n+2 ¢ m
(5.10) T i . . .
1 . . .
A T Apmyn—
0---0 fO ap * Apmyn—2 0

where the last column is determined by equating coefficients of z', form=i=m+n—1
in (4.1). Thus, det (H,,,,) # 0 and det (f,)# 0 implies that det (H,, ,—,) # 0. Thus, (5.2)
implies (5.1).

In a similar fashion, by defining

(5.11) Uk(z) = E%(2) - zgdr§ ' Ph_1(2),
(5.12) Vf(z)=Ff_1(Z)—zg6kr6k_1 (2),

it can be shown that (5.3) implies (5.1).
To obtain the inverse formula, substitution of (5.6), (5.7), (5.11), and (5.12), after
normalization by (5.5), into equation (3.1) gives

1 N2 oo o1ro fr., --- ff
Joor o S|l an- o 4d q: 2 P l _ :1
H;,ln= K K .. : _ . _-" X .. .
’ L : % 9 - R it
ﬂ) qn—l
- 0 0
(5.13)
e do O -
oo aio - qd
+ (80— g%) S
9o . . M
0 L qn—l

But, (4.1) and (4.2) imply that
(5.14) Ej(2)F,i(2) = Fi_\(2)En(2) = 2" {F}_1(2) G(2) = G*(2) F,_1(2)}.

110 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

Consequently,
(5.15) Fy (2)G(2) - G*(2)F,_4(2) =0
and, in particular,

(5.16) g=285.

Thus, (5.13) is exactly (5.4), since the last product cancels. 0
Remark 1. Corollary 5.1 can be proved directly from (2.7), (2.8), (4.1), and (4.2).
Indeed, using the same arguments as in Lemma 2.5, we can obtain

[5 QE(2) —rB"—’P,"i.-x(Z)].[Em(Z)fJ' Ppi(2)16" | _ ne

—f¢FE(z) fET'EE(2) wF

(5.17) Forr(D)f5" Quaa(2)rg'] SUNE

(=
~ O

and the commutative relationship

[En(2)f5" Pm-,<z)r5‘] ' [rQE(z) T PEL(2)] na [T 0]
LF(2)fs' Q'] L& Fi f5ER 177 Lo 1)
Consequently, we can normalize our Padé forms according to (5.5) and the formulae
will follow in a fashion similar to the proof of Theorem 3.1.

The actual proof, in addition to being simpler, serves to illustrate the existence
of Frobenius-type relationships (generalized from the scalar case (cf. Gragg [17]) to
the matrix case) between matrix Padé forms of types (m, n), (m,n—1), and (m—1,
n—1). These relationships, which exist under the assumptions of Corollary 5.1, are
given by (5.6), (5.7), (5.11), and (5.12) (see also [7]-[9]).

Remark 2. From (5.17), it follows from equating coefficients of degree m+n—1
that

(5.18)

(5.19) ehgn=firo
and
(5.20) qi_1em=rifo.

Thus, if the conditions of Corollary 5.1 are satisfied, then e¥, g,_,, g¥_,, and e,, are
all nonsingular. Normalizing (2.7), (2.8), (4.1), and (4.2) by setting

(5.21) rh=ri=e,=eh=1,

rather than by (5.5), we obtain

(5.22) Hppn (G155 0" =10, --,0, 1T,
(5.23) (g%, ,q8] Hpo=[0,---,0,1],
(5.24) Hpp [fors o5 fol =110, -, 0],
(5.25) [faa, . f&1 Hppn=[L0,---,0].

These conditions, together with the requirement that det (g,_;) # 0 and det (g¥_;) #0,
are exactly the conditions given by Gohberg and Heinig [16] in deriving the inverse
formula (5.4). Because of the different normalization requirement, their formula
includes the term g,., between the first two matrices and q*_| between the last two
matrices. This is permissible because of (5.19)-(5.21). In the scalar case, this is the
well-known formula of Gohberg and Semencul [14].

INVERSES OF BLOCK HANKEL 111

Remark 3. The assumptions of Corollary 5.1, which are equivalent to conditions
(5.22)-(5.25) of Gohberg and Heinig, are far more restrictive than the assumptions of
Theorem 3.1, which are equivalent to (3.8), (3.9) and the block Yule-Walker equations
(3.10) and (3.11). The formula of Gohberg and Heinig has the additional requirement
that g,_, and g%_, be nonsingular (which is equivalent to H,, ,-, being nonsingular).
Thus, for example, (3.1) can be used to obtain the inverse of

100
(5.26) Hy,=|0 0 I
010

whereas, (5.4) cannot be applied.

Remark 4. Since the assumptions of Corollary 5.1 require that not only H,, , but
also H,, ,_, be nonsingular, it should be possible to express the inverse of H,,,, in
closed form as well. Indeed, by deriving Frobenius-type identities similar to (5.6),
(5.7),(5.11), and (5.12) (cf. Bultheel [7]-[9]), the matrix Padé form of type (m —1, n —2)
can be expressed in terms of matrix Padé forms of type (m,n—1) and (m—1, n—1).
Then, substituting the Padé forms of type (m, n—1) and (m—1, n—2) into (3.1) (with
n replaced by n—1) and simplifying, we obtain as another corollary to Theorem 3.1
the second inverse formula of Gohberg and Heinig, namely,

o2 0 So Qf—l"' ‘I>1l< qn—2 <+ 9o fr f:k

(5.27) r—n}n—1= M .. I . .
fo qr- 9o fi

Here, we have again normalized according to (5.5). We also note that the Gohberg-
Heinig formulae given here are both determined from (3.1). Additional formulae, based
on (3.2) rather than (3.1), can also be derived.

Remark 5. Gohberg and Heinig prove their formulae with the coefficients over a
noncommutative algebra. Our formulae and results also carry over with minor altera-
tions. In particular, Theorem 2.3 and Corollary 5.1 would both require that (2.9) be
equivalent to (2.10) and (2.11), simultaneously.

6. The inverse formulae of Gohberg-Krupnik. Let (L,,_,(z), M,_,(z), N(z)) and
(L% _5(z), M¥_5(z), N*(z)) be an RMPFo and an LMPFo, respectively, of type (m —
2, n—2) for A(z). These matrix Padé forms then satisfy

(6.1) A(2)M,5(2) = L, 5(2) =2""" 7 N(2),
(6.2) M7 _2(2)A(2) = L}, 2(2) =2""" 7 N*(z2).

The inverse of H,, , in terms of matrix Padé forms of types (m -2, n—2)and (m—1,n—
1) is given by Corollary 6.1.

COROLLARY 6.1. Let the matrix Padé forms identified by (2.7), (2.8), (6.1), and
(6.2) be given. Then, the following statements are equivalent:

(6.3) det(H,,,)#0 and det(H,_,-)#0,
(6.4) det (ng) #0, det(qo)#0, and det(ry)#0,
(6.5) det (n¥)#0, det(q¥)#0 and det(r¥)#0.

In addition, if any (and therefore all) of the conditions (6.3), (6.4), or (6.5) are satisfied,

112 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

then
— . 0
q'2 9o m’,‘,‘_z - mf]
e ' :
%0 ' mf—z
m, ;---my 0 0
: o qn - 9o
(6.6) | m . g5 R
qr-
qn—l
+ . qal[‘ﬂf—l, ttt, q§]'
9o

Here, the matrix Padé forms have been normalized so that*
(6.7) ne=n¥=ro=ri=1

Proof. To prove that (6.3) is equivalent to (6.4), it follows directly from Theorem
2.3 that det (H,,,) # 0 implies that det (r,) # 0, while det (H,,_,,—,) #0 implies that
det (ny) # 0 and det (g,) # 0. Conversely, suppose that (6.4) holds. Again, from Theorem
2.3, we have that det (n,) # 0 and det (q,) # 0 implies det (H,,_; ,—;) # 0. But, then

I qn—1 Ap—pn+1 " " ° Ay 0
Ap—n+1 """ am . : : :
(6.8) . . i = : : 1,
I q1 A T Apn—2 0
am Tt Apn—
0 T 0 9o a, C Qpyn— ro

together with the assumption that det (r,) # 0, implies that also det (H,,,) # 0.

A similar argument shows that (6.3) is equivalent to (6.5).

To prove (6.6), we first establish some identities. Observe that, under the normali-
zation condition (6.7), (L, _»(z), M,_,(z), N(z)), (L¥_,(z), M%_y(z), N*(z)),
(Pu-1(2)q0", Qu-1(2)q0", R(2)qo "), and (qd™'Ph_i(2), 7' Q¥ \(2), g5 'R*(2))
satisfy the conditions of Lemma 2.5, with (m, n) replaced by (m —1, n —1). Here, (2.25)
becomes

(69) [Q;_1<z)q§1‘ MH(z>][ZN*fgz)* ;yf;z(z)]= [I 0]
Z°R(z)qo° N(z2) ll-2z7q57 R*(z) q5 Qu.(2)] L0 [

and, in particular,

(6.10) {R(2)qo"}N*(z) = N(2){gd 'R*(2)}.

Note that the constant and linear terms in (6.10) yield

(6.11) qo=435

and

(6.12) g (nF=r¥)=(n—r)go".

4 Rather than normalizing with ry=r¥ = I, it is equally proper to normalize with g,= g =L

INVERSES OF BLOCK HANKEL 113

For later purposes, also observe the identity

Q> """ q 0 0 qi‘:_ . ..q*

Gur * Qo qio o q¥ 1 ¢ s
: 90" P Lol I q&! S

é q* 9o . 4
0 n—1 0 0

= : |q0'[g5-1, .48
9o

which follows using (6.11).
Next, we proceed as in Corollary 5.1 by constructing right and left matrix Padé
forms of type (m, n) for A(z). Set

(6.14) U, (z)={P,_(2)[I+(n,—r)z]— Lm~z\2)22}qgl
and
(6-15) V,,(Z) = {Qn—l(z)[I + (nl - rl)z] - Mn—2(z)22}q(;1 .

Then, U,,(z) and V,(z) provide an RMPFo of type (m, n) for A(z). To see this, note
that the degree requirements are clearly satisfied. In addition, the columns of V,(z)
are linearly independent since, in (6.15), v, = I. Finally,

A(2)V,(2) = Un(2) ={[A(2) Qu-1(2) = P (2)][I +(ny— 11)zZ]
- ZZ[A(Z)Mn—z(Z) - Lm-z(Z)]}qE'
(6.16) ={z"""'R(2)[I +(n,—r)z]=z""""'N(z)}qo"

= 2" Y (rg— no) + (ry + ro(n, "rl)_nl)z+zz{ s '}}QE1

=z""" g0,
since no=ro= I
Similarly, it can be shown that
(6.17) Ui(z) = q¢ [T+ (n¥ = rP)z]1Ph(2) = L} 2(2)27%,
(6.18) Vi(z) = q§ {T+(n¥ —r})z]Q% 1(2) - M} _5(2) 2%}

provides an LMPFo of type (m, n) for A(z).
Note that (6.15) and (6.18), respectively, yield

qn—Z : qO 0
Un—1 Vo dn—1 9o :
= . q&‘+ : (nn—rl)%’
: ' . 9o
Vo 9o 0
6.19
() m,_; m, 0 O
’ -1
—| Mo 9o
0

114 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

and
0 q¥, ... qf
... % n—1 1
Uy Uy . qif-x . q(’)’<
= % : . k-l % __ % :
M a1} * +q5 (n¥—rf) : :
* n—1 *
U,, O qn—l
(6.20)
. * *
m,_» - m>,
*—1 :
— 4o :
*
m,_,

where m*, =0. Substituting (6.19) and (6.20) into (3.1), and rearranging terms, we
obtain

n—>--+q 0

m¥_, ... m*,
H.\, = . 9" :
(0] : *
0 mn—2
m,_s my 0 0
: a1 q3
— mo qz)k 1
0 Q’ﬁ—l
0
Gn-1 ** " 9o an 0 aqs
(6.21) + o 45" :
9o qﬁ—l
(gn-2 *** qo O] 0 q¥, .- qf
. x—1 .
_ q .
9o 0 ‘If—l
| 0) 0
B ho * " q 0
q. 2 ? W ‘Iﬁl te q(’)k
+ . {(n,—r)g0" —q¢ ' (n¥—ri)}
0 *
L 0] qn-l

But, using (6.12) and (6.13), it is easy to see that (6.21) is exactly (6.6). O
Remark 1. The inverse formula (6.6) can also be determined by bordering tech-
niques. Indeed, (6.8) can be further manipulated to obtain

1
—-1,n—1 0

- qn—l
(622) H'_n,ln =[Om, .. 0] + q(;l[q:l:—la Y qg]

90

Equation (3.1) applied to H ', ,_, along with simplification using Lemma 2.5, converts
(6.22) to (6.6).

The present proof takes its cue from the approach of §§ 4 and 5. In each case,
the inverse formula is obtained from (3.1) using Frobenius-type identities for matrix

INVERSES OF BLOCK HANKEL 115

Padé forms. The Frobenius-type identities (6.14), (6.15), (6.17), and (6.18) used here
can be found in [8] (see also [22]).

Remark 2. Note that, if the matrix Padé forms (2.7), (2.8), (6.1), and (6.2) satisfy
the conditions of Corollary 6.1 and are normalized according to (6.7), then

0 0 0
m,_, . . .
. qn—l . . .
(6.23) H,n: : - ‘np=| 0 |- nm={0}|
my
1 0 I
0 4o
n, 1 0

Thus, the second last column of H ;f,, is a combination of the coefficients of M, _,(z)
and Q,_,(z). Similarly, we can obtain the second last row of H., as a combination
of the coefficients of M¥_,(z) and Q}_,(z).

Conversely, suppose X =[x,_;," ", %] and Q=[g,_,* ", qo)', respectively,
represent the second last and last block columns of the inverse of H,,,. Then, if
det (q,) # 0, we have that

0
Xn—1 qn—l .
(624) Hm,n ' - q(;lxo = 0
Xo 9o I
- qa’xo
so that
0
Xn—1 qn—1 .
(625) Hm—l,n~1 . - . q(;lxo = 0
X 91 I

This implies that

(6.26) M.._z(Z)=Z"{X(Z)—Q,._1(Z)q6‘xo}

is an RMPFo denominator of type (m —2, n —2) for A(z). Similarly, we can obtain an
LMPFo denominator of type (m—2, n—2) when we have the last and second last
block rows of the inverse of H,,,. Then substitution into (6.6) yields

ne2 s e 0
qn—2 .QO X e xk
Hp,=| - . S
’ qO ' 0 : x*
0 n—1
Xpg ++eXg O]
X2 o0 % Gi e ad
-1 . 5 S
0 *
i 0] qn——l
(6.27) g 4% 0]
nr o ai oo al
+ o 90 ' (x§ —x0)qd ™! :
9o q*
i 0 J n—1

116 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

qn-1
+Ho |g0'lgEa, L g8
90 .
whereas, substitution into (3.1) gives
| n-2" " "o xhoexy Xp—2' " *Xp gt qf
(6.28) H,_nl_l’n__l = qal — q(>)|<—1 -
9o Xh_ Xo qn-

Remark 3. In the scalar case, if X =[x,_;," ", %] and Q=[qu-1," ", qo)’
represent the second last and last columns of the inverse of H,,, respectively, and
qo# 0, then (6.27) and (6.28) reduce to

s ce-do O
q. 2 9o Xy y+Xg
Hyl.=q'{| @ -~ :
((I)O xn—l
(6.29)
Xn—p'*Xo O 5
: dn-1---9o 9n-1 " 4n—190
_ . . +1 .
Xo .o . S
0 dn-1 dn-19 " qo
and
qn—2 Qo || Xn—1°+-Xy
r_nl—-l,n—l = qS' .
qO Xn—1
(6.30)
Xn—2 Xo dn—1 9
- X
Xo qn—l

These are the original formulae of Gohberg and Krupnik [15].

Remark 4. Following the approach of § 4, we can also obtain conditions and
inverse formulae for H,,_, ,—, and H,, , when the first and second block column, along
with the first and second block row, of the inverse of H,, , is given (cf. Iohvidov [19]).
Here, conditions and inverse formulae for H,,_, ,-; and H,, , are stated in terms of
matrix Padé forms of type (m, n—1) and (m+1, n—2). Additional formulae, based
on (3.2) rather than (3.1), can also be given.

7. The inverse formulae of Ben-Artzi and Shalom. As mentioned in § 3, the assump-
tions of Theorem 3.1 can be equivalently replaced by the requirement that we obtain
solutions to

(7.1) Hyp [Gnrs 05 0" =[0,--+,0,17,
(7.2) (a5, . 498] Hpnn=[0,---,0,1],
(7.3) H,, [V, 0] = ~[@mi1s s Qmtnts am+n]r,
(7.4) [0F, 0] Hpin = ~[@ms1s " * " Gmencts]

where a,,., can be any p X p matrix. It is possible to alter the right-hand sides of (7.3)
and (7.4) and still obtain inverse formulae for H,, ,. In particular, we may replace the
right-hand sides by linear combinations of the rows and columns of H,,, ,.

INVERSES OF BLOCK HANKEL 117

LemMmA 7.1. Let H,,, be the block Hankel matrix (1.1). Suppose there are solutions
to (7.1) and (7.2) along with solutions to

(75) Hm,n : [xn-—l, trty, xO]t = Hm+1,n * [yn—l’ trt, ,VO]',
and
(76) [x;‘:—-ls e ’xé:] : Hm,n =[y>rl:—11 e ,J’:)k] : Hm+l,n’

with y, and y§ nonsingular. Then H,,, is nonsingular with inverse

Yn-17Xn—2" " Y1— X0 Yo
. q¥_ie..qd
: -1 :
Yo :
Y1—Xo g
-1
Yo "
(7.7)
Gn-2 -+ 90 O xEo o xE-yh oo xE -y
+ . . y(’f_l *
90 xxo=yual’
0 b o
or, equivalently, the inverse is given by
Yaa=Xio o yi=x3 ¥§
qn—l N
: *—1 .
Lo Yo
o a y¥-x§
0 <+ 4n-1
v
(7.8)
Xn-1 g5 ---q5 0
Xn-2"Yn-1 -1 .
+ . N Yo *
. do
Xo=Y1 +++ Xp—27"Vn-1 Xn—1 0
Proof. Since
Am—n+1 cee Oy Xn—1 An—n+2 ¢+ Am+ Yn—1
Am " Qman-1 Xo | m+1 """ Gmtn Yo
7.9
(7.9) : .
An-n+1*+* Am
— N N Yn—1
L Ay am+n~1)
N
am+l
+ * Yo,
am+n
we get that
0 Xn—1
Un
N Yn-1 Xn—2 -1
(7.10) = : -1 * Yo
0, : .
N Xo

118 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

is a solution to (7.3). Similarly,
(7.11) Lok, -, of1=pd" - ([0, yk 0, 1= [xdoi, xha, - x§D)
is a solution to (7.4). Substituting (7.10) and (7.11) into (3.1) gives (7.7), while
substituting into (3.2) gives (7.8). 0
Let E) denote the n x 1 block matrix having the p x p identity matrix as its ith
block row, and zeros elsewhere. Similarly, let E*” be the 1x n block matrix having
the p X p identity matrix as its ith block column, with zeros elsewhere. Theorem 7.2
shows how to construct the inverse of a block Hankel matrix, knowing only the last
block column and row, along with two successive block columns and rows of the inverse.
THEOREM 7.2. Let H,, , be the block Hankel matrix (1.1). Suppose there are solutions
to (7.1) and (7.2), along with solutions to

(7~12) Hm,n [xpoi, e, xo]l = E(i),
(7.13) Hypp [Yoots -+ yol' = B9V,
(7.14) [x¥_,, -, x¥] Hy,,=E*",
(7.15) [yt_i, -,y H,,=E**D,

If, in addition, y, and y§ are both nonsingular, then H,,, is nonsingular with inverse
given by

Yn—1 Txn-—Z e V1™ X0 Yo a*, ... qé"
. ._1 .
Yo .
Yi—X
b qn-
Yo
[(Gn—2 -+ g0 O Xioy xXho—yha oo xE-yf
(7.16) +f o yE! L '
90 - ° Xp = yho
| 0 xho
-‘In—z *tt qo 0 -
: p g1 48
+ 0 Y& ri=Yumi) - ¥0! RPN K
qo *
0 | qn-1
or, equivalently, the inverse is given by
Ve xma o yf=xd y§)
qn—-l .
LR *x—1 . .
. . y
o a | yF-xd
° " e 1
i Xn—1 q;l:—2 e q:)k 0
Xp—2""YVn— - . N
(7.17) +| T2 vo'l
. 90
| Xo ™ V1 Xp-2"Yn-1 X 0
-q,,_l q’,’,;_z . g 0
e D G Vol KR N
9o
L do *** Gn-1

INVERSES OF BLOCK HANKEL 119

Proof. Equation (7.13) implies that

(7.18) Hy, Y=EP+E"™ . ¢
where

(7.19) C=qpi1 " Yurt -t @min Yo.
Therefore

(7.20) Hpu (X+Q+) =Hpirn* Y,
and similarly we can show that

(7.21) (X*+c*- Q*) Hppn=Y* Hpi10
where

(7.22) cF=y¥ At T YE Apin.

Therefore, using Lemma 7.1, H,,, is nonsingular with inverse given according to (7.7)
or (7.8) applied to equations (7.1), (7.2), (7.20), and (7.21). For example, substituting
these expressions into (7.7) and expanding, we obtain the inverse of H,,, as

Yn—1 Txn——Z e Y17 X0 Yo] Qf—1 o q3<
1 .
.t Yo . :
Y1— X : ¥
' ° ‘ﬁ—l
Yo
(g2 -+ qo 0] Xk xﬁ~2“)’:’:~1 P “y;k
(7.23) + Ty . L
9o : 0 XF = yeo
| 0 i xho
[(Gn—2 -+ g0 O
: ? . ° W iy - qy
nll B (&' c*=c yo) oo
9o ’ q;k
L 0 . "
To obtain formula (7.16), we note that
y;‘:—i= y*. E®
=Y*-H,, X

=Y*. {Hm+1,n : Y—Hm,n : Q C}
=Y* {Hu1a* Y-E" ¢}

(7.24)
=Y* Hpuu Y=p§-c
=Y*Hpn [0, yn1, s 1] +c*po—y8 - c
=E*V [0, ymy, o]+ o=y
=J’n—i+C*J’o_)”z)‘< - C

Therefore

(7.25) (R T o VR G R R

Substituting (7.25) into (7.23) gives (7.16). Formula (7.17) is verified in a similar
manner.]

120 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

Remark 1. In the scalar case, Theorem 7.2 gives the inverse of H,,, in terms of
the last column along with an additional two successive columns of the inverse. In
this case, (7.16) gives H,, as

Yn-1=Xp—2 <+ Y17 X0 Yo

9n-1 -+ 9o
-1 . .
Yo .
- X,
b4 0 s
Yo
(7.26)
Gn2 --+qo O] [xoe1 Xp2=yue1 -+ Xo—m
+ . '
9o Xn—2"Yn—1
0 Xn—-1

Formula (7.26) is due to Ben-Artzi and Shalom [3] (in its Hankel formulation). Equation
(7.17) reduces to an alternate formula in the scalar case.

Remark 2. Let S be the nx n shift matrix having 1’s along the superdiagonal,
and 0’s elsewhere. Suppose in the scalar case there is a solution Q, to (7.1) along with
a solution to

(7.27) H,,Z=S-H,,'Y
where y,# 0. Then, there is also a solution to (7.5) since
(7'28) Hm,n : (Z+ Q : C) = Hm+1,n) Y

where c is given by (7.19). Since y,# 0, Lemma 7.1 implies that H,, , is nonsingular,
with inverse given by (7.7). After simplification, this inverse formula is

Vo= Znz tt Vi=Zo Y
R [R
yo' - - :
1 0
qn-
Yo :
(7.29)
n—2 ' Qo 0 Zn-1 Zpn—2"Yn-1 """ 20— N
+ : L ., . .

90 Zn-2""YVn-1
0 Zp—1

This is the main inverse formula of Ben-Artzi and Shalom [3] in the scalar case. They
use this formula to give simple derivations of their own scalar formula (7.26), along
with other inverse formulae including the formulae of both Gohberg-Krupnik and
Gohberg-Semencul.

8. Conclusions. The Frobenius-type relationships given in this paper are but a
small sample of similar recurrence relationships that exist between matrix Padé forms
that have been developed by Bultheel [7]-[9]. All the relationships require the existence
of inverses of certain coefficients in the Padé forms involved. These requirements are
always satisfied for normal matrix power series (where H,,, is nonsingular for all m
and n). For this restricted class of power series, many of the recursive relationships
provide directly algorithms for the computation of Padé forms. Depending on the path
(within the Padé table) determined by the recurrence, Bultheel observes that most
previous algorithms [1], [5], [13], [23], [25]-[27], [32] that explicitly or implicitly
compute the inverse of Hankel or Toeplitz matrices are equivalent to using an appropri-
ate recurrence formula.

INVERSES OF BLOCK HANKEL 121

For a subset of these relationships, this paper shows that each recurrence yields
a separate closed formula for the inverse of a block Hankel matrix. Algorithms based
on recurrences that specify computations along an off-diagonal path (e.g., [1], [5],
[27], [32]) yield closed formulae expressed by (3.1), (3.2), and (6.6). Those that specify
computations along a staircase (e.g., [13], [23], [25]) yield formulae (5.4) and (5.27);
whereas, those that specify computations along an antidiagonal path yield (4.8) and
(4.9). Additional closed formulae can be derived corresponding to other recurrences
given by Bultheel.

Formulae (5.4), (5.27), and (6.6) are equivalent to those given by Gohberg and
Heinig and Gohberg and Krupnik, whereas (3.1), (3.2), (4.8), and (4.9) are new. A
major advantage of the new formulae is that the underlying assumptions are far less
restrictive than they are for (5.4), (5.27), and (6.6). Whereas, the new formulae require
only that H,,, be nonsingular, the latter also require that an additional submatrix be
nonsingular. In addition, necessary and sufficient conditions for the existence of H,,.,
are directly available from the coefficients of Padé forms. This provides a significant
computational advantage.

Relaxed conditions provide little computational gain, however, if the available
algorithms can function only under the more severe restrictions of normality. Unfortu-
nately, this is true for most algorithms that compute nonscalar Padé forms or decompose
block Hankel matrices. One exception in this regard is the MPADE algorithm of
Labahn and Cabay [22]. This algorithm is based on a recurrence relationship between
Padé forms at successive nonsingular nodes along an off-diagonal path of the matrix
Padé table (or, by reversing coefficients, along an antidiagonal path). When the power
series is normal, or, less restrictively, when all principal minors of the associated
Hankel matrix are nonsingular (e.g., when the block Hankel matrix is positive definite),
all the nodes along the path are nonsingular and then their recurrence relationship
reduces to (6.15), which is one of many given by Bultheel. The methods based on this
relationship are special cases of the MPADE algorithm

For purposes of expressing the inverse of H,, , in terms of the new formulae (3.1),
(3.2), (4.8), and (4.9), the MPADE algorithm is particularly suitable. Singularity is
detected with no additional effort. When H,, , is nonsingular, the necessary Padé forms
(i.e., the solutions of the associated block Yule-Walker equations) appearing in the
formulae are simultaneously available on termination. The algorithm has no restrictions
of normality. In addition, intermediate results enable the computation of the inverses
of any nonsingular principal minors.

Using classical polynomial arithmetic, the cost of the MPADE algorithm is
typically O(p*n?), but can reach a complexity of O(p*n®) in pathological cases (e.g.,
when all the principal minors are singular). When the power series is normal, this cost
is the same as that of previously mentioned algorithms.

Using fast polynomial arithmetic in the normal case, Bitmead and Anderson [4]
indicate that their scalar algorithm, based on a divide-and-conquer partitioning of the
Hankel matrix, can be generalized to the nonscalar case with a cost complexity of
O(p’nlog® n). Under somewhat relaxed normality conditions (i.e., near-normality),
Labahn [21] also gives an algorithm, an adaptation of MPADE, with the same
complexity.

In the scalar case, one call of an algorithm given by Cabay and Choi [11] can be
used to construct the inverse formulae (3.1), (3.2), (4.8), or (4.9) with cost complexity
O(n log” n) under no restrictions of normality. This is also true of other methods (cf.
Sugiyama [29] for a survey) and, in particular, this is true of the method of Brent,
Gustavson, and Yun [6]. They use two calls of a fast antidiagonal GCD algorithm,

122 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

EMGCD, to determine the two Padé forms required by the Gohberg-Semencul formula
(5.4). The algorithm succeeds immediately if both H,,, and H,,,_, are nonsingular.
If H,,-, is singular (but H,, is not), then a nonsingular matrix H,,,., is first
constructed (it is not clear that this is always possible in the nonscalar case). Two
additional calls of the antidiagonal algorithm are then made to yield the two Padé
forms required by the second formula (5.27) of Gohberg and Semencul. By computing
the inverse of H,,, using (4.8) or (4.9), their algorithm can now be altered so as to
only require one call of their antidiagonal algorithm.

The use of (3.1) to express the inverse of H,,, avoids the immediate problem of
potential numerical instabilities inherent when using instead the two formulae (5.4)
and (5.27) according to the status of singularity of relevant minors (cf. Bunch [10]).
However, this does not imply that the algorithm for determining the inverse of H,,,
using (3.1) is stable, since this first requires the stable computation of (P(z), Q(z))
and (U(z), V(z)). The question of the stability of the algorithm MPADE for computing
(P(z), Q(z)) and (U(z), V(z)) is an open question currently under investigation.

Acknowledgment. We would like to thank the reviewer for bringing the paper of
Ben-Artzi and Shalom to our attention.

REFERENCES

[1] H. AkAIKE, Block Toeplitz matrix inversion, SIAM J. Appl. Math., 24 (1973), pp. 234-241.

[2] G.S. AMMAR AND W. B. GRAGG, The generalized Schur algorithm for the superfast solution of Toeplitz
systems, Lecture Notes in Mathematics 1237, Springer-Verlag, Berlin, New York, 1987, pp. 315-330.

[3] A. BEN-ARTZI AND T. SHALOM, On inversion of Toeplitz and close to Toeplitz matrices, Linear Algebra
Appl., 75 (1986), pp. 173-192.

[4] R. R. BITMEAD AND B. D. O. ANDERSON, Asymptotically fast solutions of Toeplitz and related systems
of linear equations, Linear Algebra Appl., 34 (1980), pp. 103-116.

[5] N. K. BOSe AND S. BAsu, Theory and recursive computation of 1-D matrix Padé approximants, IEEE
Trans. Circuits and Systems, 4 (1980), pp. 323-325.

[6] R. BRENT, F. G. GUSTAVSON, AND D. Y. Y. YUN, Fast solution of Toeplitz systems of equations and
computation of Padé approximants, J. Algorithms, 1 (1980), pp. 259-295.

[7] A. BULTHEEL, Recursive algorithms for the matrix Padé table, Math. Comp., 35 (1980), pp. 875-892.

[8] , Recursive relations for block Hankel and Toeplitz systems Part 1: Direct recursions, J. Comput.
Appl. Math., 10 (1984), pp. 301-328.
[9] , Recursive relations for block Hankel and Topelitz systems Part 11: Dual recursions, J. Comput.

Appl. Math., 10 (1984), pp. 329-354.

[10] J. R. BUNCH, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Comput., 6
(1985), pp. 349-364.

[11] S. CaBAY AND D. K. CHoI, Algebraic computations of scaled Padé fractions, SIAM J. Comput., 15
(1986), pp. 243-270.

[12] D. K. CHol, Algebraic computations of scaled Padé fractions, Ph.D. thesis, University of Alberta,
Edmonton, Alberta, Canada, 1984.

[13] J. DURBIN, The fitting of time-series models, Rev. Inst. Internat. Statist., 28 (1960), pp. 233-244.

[14] I. C. GOHBERG AND A. A. SEMENCUL, On the inversion of finite Toeplitz matrices and their continuous
analogs, Mat. Issled., 2 (1972), pp. 201-233. (In Russian.)

[15] 1. C. GOHBERG AND N. YA. KRUPNIK, A formula for the inversion of finite Toeplitz matrices, Mat.
Issled., 2 (1972), pp. 272-283. (In Russian.)

[16] 1. C. GOHBERG AND G. HEINIG, Inversion of finite Toeplitz matrices made of elements of a non-
commutative algebra, Rev. Roumaine Math. Pures Appl., XIX(5) (1974), pp. 623-663. (In Russian.)

[17] W. B. GRAGG, The Padé table and its relation to certain algorithms of numerical analysis, SIAM Rev.,
14 (1972), pp. 1-61.

[18] F. pE HOOG, A new algorithm for solving Toeplitz systems of equations, Linear Algebra Appl., 88 (1987),
pp. 123-138.

[19] 1. S. IoHnviDpoOv, Hankel and Toeplitz Matrices and Forms, Birkhauser, Boston, 1982.

INVERSES OF BLOCK HANKEL 123

[20] T. KAILATH, S.-Y. KUNG, AND M. MORF, Displacement ranks of matrices and linear equations, J.
Math. Anal. Appl., 68 (1979), pp. 395-407.

[21] G. LABAHN, Matrix Padé approximants, M.Sc. thesis, Department of Computing Science, University
of Alberta, Edmonton, Alberta, Canada, 1986.

[22] G. LABAHN AND S. CABAY, Matrix Padé fractions and their computation, SIAM J. Comput., 18 (1989),
pp. 639-657.

[23] N. LEVINSON, The Wiener RMS (root mean square) error in filter design, J. Math. Phys., 25 (1947),
pp. 261-278.

[24] R. J. MCELIECE AND J. B. SHEARER, A property of Euclid’s Algorithm and an application to Padé
approximation, SIAM J. Appl. Math., 34 (1978), pp. 611-617.

[25] M. MOREF, A. VIEIRA, AND D. T. LEE, Ladder forms for identification and speech processing, in Proc.
Conference on Decision and Control, December 7-9, 1977.

[26] B.R.Musicus. Levinson and fast Choleski algorithms for Toeplitz and quasi-Toeplitz matrices, Laboratory
of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 1984.

[27] J. RISSANEN, Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with
application to factoring positive matrix polynomials, Math. Comp., 27 (1973), pp. 147-154.

, Solution of linear equations with Hankel and Toeplitz matrices, Numer. Math., 22 (1974), pp.
361-366.

[29] Y. SuGIYAMA, An algorithm for solving discrete-time Wiener-Hopf equations based on Euclid’s
Algorithm, 1EEE Trans. Inform. Theory, 32 (1986), pp. 394-409.

[30] W. F. TRENCH, An algorithm for the inversion of finite Hankel matrices, SIAM J. Appl. Math., 13 (1965),
pp. 1102-1107.

[31] G. A. WATSON, An algorithm for the inversion of block matrices of Toeplitz form, J. Assoc. Comput.
Mach., 20 (1973), pp. 409-415.

[32] R. A. WIGGENS AND E. A. ROBINSON, Recursive solution to the multichannel filtering problem, J.
Geophys. Res., 70 (1965), pp. 1885-1891.

[33] S. ZoHAR, Toeplitz matrix inversion: The algorithm of W. F. Trench, J. Assoc. Comput. Mach., 16
(1969), pp. 592-601.

[28]

SIAM J. COMPUT. © 1990 Society for Industrial and Applied Mathematics
Vol. 19, Na. 1, pp. 124-132, February 1990 007

A DENSITY THEOREM FOR PURELY ITERATIVE ZERO
FINDING METHODS*

JOEL FRIEDMANT

Abstract. In this paper a wide class of purely iterative root finding methods is proved to work for all
complex valued polynomials with a positive probability depending only on the method and the degree of
the polynomial. More precisely, if the set of polynomials with roots in the unit ball is considered, then for
fixed degree the area of convergent points in the ball of radius 2 is bounded below by some constant for
any purely iterative method z,, < T;(z;), where T,(z) is a rational function of z and f; and its derivatives,
for which (1) oo is repelling fixed point for all f of degree greater than 1 and (2) T,(z) depends only on z
and f’s roots and commutes with linear maps on the complex plane.

Key words. root finding, iterative methods, Newton’s method, polynomials

AMS(MOS) subject classification. 65H05

1. Introduction. The goal of this paper is to prove a theorem about the density
of points for which a purely iterative root finding method converges to a root.
d i .
For ze C and f(z) =) ;_, a;z' consider a map
Pz ff -, f")
Qzff + fP)

where P and Q are polynomials over C. For each f, T, is a map from CU {0} to itself
which we think of as an iteration in a root finding method. We require that

(1)

(1.1) T;(z) =

T;(z)=

ZPo(f, of, 2",)
7'Qo(f 2" 22f", -)
where P, and Q, are homogeneous polynomials of the same degree.
(2) T;(z) depends only on z and the roots r,, - - -, r,; of f, and

A(T;(2)) = Tar(Az)
for any linear map A:z+—> az+ b, where
Af(z)=ai(z—Ar) - - - (z— Ary)

for

f@)=as(z=r) - (z=ra).
(3) T;(r)=r,|Ty(r)|<1 for any root r of f.
(4) T;(©) =00, |T;(c0)|>1 for any f of degree greater than 1.
To measure the density of convergent points for T}, let P; denote the polynomials
of degree d with roots in the unit ball. For a polynomial f, let

I'r;={z:T{(z)~>a root of f as n-> oo}

where T7 is the nth iterate of T, (i.e., I'r,, is the set of points converging to a root of
f under the iteration T;). Let

AT,f = IFT,f ﬂ Bz(o)l.
Then Ar /4 is the probability that a random point in B,(0) converges to a root.
* Received by the editors November 30, 1987; accepted for publication (in revised form) March 7, 1989.

+ Department of Computer Science, Princeton University, Princeton, New Jersey 08544 (jf @ princeton.
edu).

124

A DENSITY THEOREM FOR ITERATIVE METHODS 125

THeOREM 1.1. Let T satisfy (1)-(4). Then for any d there is a ¢ >0 such that
Ar,;>c VfeP,
Furthermore, we have
Arp,>c Vfe P, Vr with f(r) =0,

where Ar ., denotes the contribution to Az, from the root r of f.
More precisely,

Atz =150 By(0)]
where
[ry={z:T{(z)>r as n>o}.

The above density theorem was conjectured to hold for Newton’s method by
Smale in [Sma85]. This conjecture was proven in [Fri86]; the proof used some special
properties of Newton’s method and explicit bounds on the constants as a function of
d were given. The above theorem applies to a much larger class of root finding methods,
though no explicit bounds on c are given.

Examples of T satisfying (1)-(4) are

(1) Newton’s method, T,(z) =z —(f/f).

(2) Modified Newton’s method, T;(z) = z—h(f/f’) with a constant h, 0<<h <1.

(3) Taylor’s method (see [Atk78])

)=+ % & (—-"5',,(!2)))
where ¢,(z) solves
dp(z) f(2) B
dt - f,(z)s ¢0(Z) =z

with k a positive integer and h a positive number sufficiently small (depending on k).
(4) Incremental Euler’s method (see [Atk78])

L (=hf(2)"

T()=z+ L —pF

i=1

g (f(2))

with g =f"", k a positive integer, and h positive and sufficiently small.

(5) Any iterate of a T satisfying (1)-(4). This shows that maps satisfying (1)-(4)
may contain extraneous attractive fixed points. For example, Newton’s method, even
applied to polynomials of degree as low as three, can contain attractive periodic points
of period two. Therefore the second iterate of Newton’s method can have extraneous
attractive fixed points.

To prove Theorem 1.1, take any sequence f,, € P;; we will show that A7, cannot
approach 0 as n tends to infinity. By passing to a subsequence we can assume each
of the f,’s coefficients, or equivalently each of f,’s roots, converge. If Ar, were
continuous in f at the limit of the f,’s, then we would be done; the fact that A7, can
be discontinuous at f’s having multiple roots makes the theorem more interesting. If
the limit of f, has at least one isolated root, one would get enough of a contribution
to Ary, from such an isolated root (for large n) to show that Ay, is bounded away
from zero. However, if all of f’s roots tend to cluster into several groups as n - o0,
we must look at the limiting geometry of each individual cluster to estimate Ar /. So
fix a cluster, and “blow-up” the picture of the roots at that cluster so that, while they

126 JOEL FRIEDMAN

remain in some bounded region, they separate into smaller subclusters. Again, if the
blow-up of at least one cluster has as least one isolated root, we are done; the reason
is that the isolated root’s contribution to I'r,; contains a sequence of balls that, from
the point of view of the subcluster, tend to c0 and whose radii get larger. These balls,
from the point of view of the original scale of the problem, look like a sequence of
balls whose radii get smaller and smaller and whose center converges to the cluster’s
limit point. It is not hard to see that in the original scale of the problem, the largest
ball is of appreciable size, thus bounding Ar,, from below.

If none of the clusters has an isolated root, we look at the geometry of each
subcluster, blowing up the picture at each subcluster. Since the blowing-up process
separates a cluster of roots into at least two distinct subclusters, successive blowing-up
eventually isolates the roots. One can then find balls in I'r;; for each root in the
blow-up of the picture that isolates it, and back up through the blow-ups until reaching
the original scale of the problem, finding balls in each scale of blow-up that lie in
I'r; . The fact that this can be done for each root proves, in addition, the second part
of the theorem.

The basic estimate for the existence of the aforementioned balls is Lemma 2.2,
proved in § 2. In § 3 we describe the blowing-up process more precisely and show how
Lemma 2.2 can be applied backwards through the blowing-up process.

2. Some preliminary results. Let g: N> CU {00} be a complex analytic map, for
an open N < CU {0}. Let z€ N be a repelling fixed point, i.e., g(z) =z and |g'(z)| > 1.
LemmA 2.1. For any open A< C we have that for n sufficiently large,

g"{B.(2)}NA# .

Proof. Apply Cauchy’s formula for (fg")'(z), where f is a Mobius function taking
a point in A to o0, and where the contour is a small circle around z.

For our maps T, we have that oo is a repelling fixed point so the lemma can be
applied.

From condition (1)-(4) on T it is easy to see that

QO(I, d’ d(d - l), CC ')
Py(1,d,d(d—1),- ")

Ti()=q(d)=

is a rational function of d independent of f, and that if r is a k-tuple root, then

Py(1, k, k(k=1),-) _ 1
QO(I’ k, k(k—l)") ') ‘I(k)'

For any f we have that for z in a neighborhood of co,

Ti(r)=

T/(z) =——+ O(1)

q(d)
and
el 1oL
(2.1) Tf(z)—q(d)-l-O(lzl)

and T;' is defined locally. We have

T(z) 1 (1)
=——+0—
z a@ \F

A DENSITY THEOREM FOR ITERATIVE METHODS 127

and so for |z| sufficiently large, we have zo=1z, z_,, z_,, -+ given by Ty(z_;) =z_;4,
has |z_,| growing like (q(d) —¢)" for any & > 0 depending on how large |z| is, and thus

e (ol Jeo@(i-o(g))

The mean value theorem and (2.1) yield for, say, r <|z|/2,

(2.3) T{{B,(z_,)} < B.(z)
with
. 1 1 . 1
(2.4) r=rq (d)(l—O(+-- -+—))=rq (d)(l—O(-—-)).
|zl |2| |2
Let
7 = lim —=2
z= ,
n>o q"(d)
the limit existing by virtue of (2.2). For any r <|z|/2, using (2.3) and (2.4), we have
(2.5) T7{B,;"4)2(29"(d))} < B,(z)

for n sufficiently large (depending on r).
Next we would like to obtain a version of (2.5) for polynomials close to f in a
certain sense. Fix d, D, and f, and consider the set %;; p of polynomials

g(z)=(z"51) (2= S44p)

with s;€ Bs(r;) for 1=i=<d and |s;/>1/6 for i>d.
LEMMA 2.2. For any sufficiently large z and r <|z|/2 there is a c, 8,, and n, such
that if 8 <8, and n> n, we have

Te{ By ay12(29"(d))} = B.(2)

if
c
Z|q" (d) <—
|2lq"(d) <3
Jorallge Frsp.
Proof. Dividing both numerator and denominator by z*~'g?# in condition (1)
on T yields

=ZP0(1’ Z(g//g)a Zz(g”/g)’ t ')
Qo(1,2(g'/8),2°(g"/g)s *) "

For |z| sufficiently large and, say, less than or equal to 1/26 we have

T,(2)

fogl_al 1 1 d+D 1
fogl Silz—n z—si| jdvilz—s
5 — 1 1 é
= — + =0|—5+6|.
2 (z—r)(z—s:) ZIZ"Si‘ <‘Z‘2)

128 JOEL FRIEDMAN

Similarly, we have

f(k) g(k)‘

f g

iA

k! -

(z=r) - (z=r) (z=s,)(z—s;)
1
e =)

5 B 52) 5
=0 + + + - +8) =0|==m+—==)
(|Z|k+1 |z|k——1 |z|k~2) (lzlkﬂ |Z|k—l>

in the last line we have used the fact that for sufficiently large z and n we have |z|8 <1
(which follows from the second equation in the statement of the lemma). Thus

(k) (k)
sz— S O(| |+6|z|)

f —Z
r@=16)(1+0(S+ k),

Isi<--<iy=d

+)

1si<-<ig=d+D,iy>d

and so

(2.6)
Ty(z)= Tf(Z)(l + O(I |+5|Zl>)

We caution the reader that the big-O notation above is as the quantity in parenthesis
tends to zero and that the constants in the big-O notation depend on d and D. Now
fix a z sufficiently large and a small ¢ so that zy,=z, z_,, z_,, - - - defined as before
grow like a geometric series. Then, using (2.6), we see that for & sufficiently small we
have that yo=12, y_,, y_5," ', ¥, given by T,(y_;)=y_;, grows like a geometric
series, as long as |y™"| <¢/8 for ¢ sufficiently small. Then we get

ool) - (vof)

Using the chain rule, we have

n I 1 " 6
i) (v oftag o)

assuming |Tg(w)| is sufficiently large and |w|=c/8. The mean value theorem then
implies

Tg{Br‘(Z—n)} < Br(z)

r=rq (d)(1+0<| |+‘o‘|z_,1))

Hence, as before, we get that for sufficiently large n,
Te{B.;a)2(2q"(d))} = B,(2)

as long as |Z]q"(d) < ¢/ 8 for ¢ sufficiently small.

where

A DENSITY THEOREM FOR ITERATIVE METHODS 129

3. Successive normalizations. The difficulty in proving Theorem 1.1 is that A7, is
not necessarily continuous when f has multiple roots. Let f;, f5, - - - be a sequence in

P, and r}, ri,- - - a sequence of respective roots for which
lim Ar, ,»= inf Arg,.
100 T fury feP, f(r)=0 T.fir

By passing to a subsequence we may assume that
So(2)=(z=r)% - (2= i) %
with
et -te,=d
and
ri#E] Vn, i<j=k.
By passing to a subsequence we can assume
ri—>r;, as n->oo,
If r, is isolated, i.e., e, =1, then it would be easy to show that for some 8 >0 we have
Bs(ri)<=Tr;,
for all n sufficiently large, and thus

inf A >0
FePasin=0" "

(the details of the argument appear as part of the proof later in this section). If not,
we can assume
N=Ern=-':'=T,

and r; # r, for j > k,. We will now analyze more carefully the way in which r{, - - -, ri,
converge to r,.

For z,, -, z,€C not all the same, we define the normalization of z,, -, z,
centered at z, to be the unique linear map

g(z)=az+b, acR,a>0,beC

such that

T lg(z)—g(z) =1,
i<j
and g(z,) =0.
By passing to a subsequence we can assume that
(1) the normalizationsof ry, "+ * % , 8.(z) = aj, + b,, centered at r} have g,(r{) > s;
as n-> 0, and
(2)

(3.1) gi™tn%la, > a

as n-oo for some ae[1/q,, 1], where

kl
9= Q(_gl ei)

and where |B] denotes the largest integer =f.
Clearly

Y lsi—sl=1,

i<j

130 JOEL FRIEDMAN

and so we have
s1=cc =8,

and s;# s, for j>k,, where k,<k,. In other words, by normalizing we separate the
first k, roots into smaller groups. By repeated normalization we will finally separate
ri from all other r;’s. Now we start with the deepest level of normalization and work
up, proving a density lower bound for each level.

Let the deepest level be ¢, and let

h,(ri)->¢t for1=i=k,
where h,, is the normalization of ry, - - -, ri, centered at ri. We have

Zli—gl=1,

i<j
t;,=0, and t; # ¢, if i>1. Consider
f@)=(z=t) - (z—1,)%.

Since Ty(t,)=t,, |T%t,)|<1, and oo is a repelling fixed point for T;, we have open
sets E, arbitrarily near oo, such that TH{E} > t, as n > 00. Take a point z large enough
so that Lemma 2.2 holds, with B.(z) converging to ¢, uniformly under T; for some
£ >0 (we can assure uniform convergence by assumption (3) of § 1). We have

BEq'}'/Z(Eq;‘) cl'r;

for m sufficiently large, where Z is as in Lemma 2.2 and

qc= Q(ig e,~>.

Let h; be the normalization of the ¢—1th level, i.e., of r{,- - -, r, centered at ry,
h,(z)=a,z+b,

and let
h,(z)=a,z+b,.

We have that

[
_:' q}; log, (a,/al)} o
an

as n- oo for some a €[1/q,, 1] (at each level we normalize and pass to a subsequence
satisfying a condition analogous to that of (3.1) as well as the preceeding condition).
We want to prove that

(3.2) B.(z0) =T 1,5
for all sufficiently large n, where
zo=zaq;™,
co=¢caq; " /4,

for some positive integer M; this will complete the first stage moving backwards
through the normalizations, each time finding a ball of fixed size with respect to the
current normalization in I'r;, for sufficiently large n. To prove (3.2) first consider

hofu(2) = (2= ha(r7) - = - (2= ha(ri,) .

A DENSITY THEOREM FOR ITERATIVE METHODS 131

We claim that for n sufficiently large we have
B.(z)<=T g, .
To see this, we note that for some small » >0 we have
lz—=t|=n=>|THz) - t|=(1—p)|z -1,
by assumption (3) of § 1, for some w >0, and that for some large N,
TP {B.(2)}< B, ;x(1)

by the uniform convergence. Estimating as in Lemma 2.2 (note that for any § we have
h.f, € Fzsp for n sufficiently large and D = d —q,) we get that for n sufficiently large

lz=t|=n=>T, ;. (2) - t|=(1—p/2)z—t)|=>zeT 1),
and that
TPII\,I,f,,{Be(Z)}C Bn(tl)c I‘T,h,, ,,

using h,(r{) =1, and that for any y e B.(z) we have y, Ti(y), T}(y), - - - stays away
from the r{’s with i>1. Now we apply Lemma 2.2 to conclude that for m sufficiently
large we have

T;'r,l,f,,{Beq'}'/Z(Zqu)} < Ba(z) < I"l",h,,f,,
so that
B.,n2(29¢) < T,

as long as |Z|q} <c/8& for some c sufficiently small, where 1/8 is a lower bound on
h,(r}) for i> k,. Rescaling by a factor of a,/a) and translating appropriately we get

B.y2a,/2ay (297 an/ an) < Uiy,
if
(3.3) |z"|q';'a,,/aﬁ,<cmikn hL(rH)<c.
i>ky

Taking

a,
m(n) = lIOg‘”a_J -M,

where M is sufficiently large to ensure (3.3) holds, we get that for sufficiently large n,
Beaq;M/4(£asz) Slrniy,

the 4 in saq,;™ /4 appearing to account for the fact that

An ()
—q¢"
a

n

approaches, rather than equals, ag,™ as n - co. Thus (3.2) is established.
Now that we have a statement of the form

B.(z0) = Ty, »
we proceed to get a statement of the form

B, (z)) =Tz,

132 JOEL FRIEDMAN

where h;, is the normalization at the £ —2th level, i.e., the normalization of r{, - + -, r,_,
centered at z{. To do this, we consider

F@)=(z=1)% (2= 1y,) .

Using Lemma 2.1 we can find an arbitrarily large z with an ¢ so that for some N

T}{B./2(2)}< B (z).
Now we repeat the argument of before to conclude
T3s{B.(2)} = B, (20),
ie.,
B.(z) =z,

(with uniform convergence) for n sufficiently large, and that
T3 {B.(z0)} = Ty,

(again with uniform convergence) for some m'(n) and fixed ¢,, z,.
Repeating the above argument ¢—2 more times yields that for all n sufficiently
large we have

Be(z) < 1—‘T,f,,
for some fixed £ and z with z very near r{. Hence

lim Ap > 7e?>0

n—>00

and Theorem 1.1 is proven.

REFERENCES

[Atk78] K. ATKINSON, An Introduction to Numerical Analysis, John Wiley, New York, 1978.

[Fri86] J. FRIEDMAN, On the convergence of Newton’s method, in Proc. 27th Annual Symposium on
Foundations of Computer Science, 1986, pp. 153-161.

[Sma85] S. SMALE, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc., 13 (1985), pp. 87-121.

SIAM J. CoOMPUT. © 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 133-142, February 1990 008

A FAST PARALLEL HORNER ALGORITHM*

MICHAEL L. DOWLINGT

Abstract. The simple Horner algorithm solves the problem of evaluating a polynomial of degree d with
n indeterminates; in this paper it is shown that its implementation on a parallel computer with O(d)
processors can achieve a complexity of 2[log, (d +1)] - ([log, n]+1). If, in addition, the evaluation of all
partial derivatives is also sought, then the full Horner algorithm solves this problem on a parallel computer
with O(d"™") processors, achieving a parallel complexity of 2[log, (d+1)] - ([log, (d +1)]+ [log, n]+1).

Key words. parallel algorithms, algebraic complexity, parallel polynomial evaluation

AMS(MOS) subject classifications. 68C25, 68C05, 68B10

1. Introduction. This article applies a technique for parallelising sequential pro-
grams to the problem of polynomial evaluation. Given a program implementation of
the Horner algorithm, it is shown that sufficient information can be obtained from its
semantics for the program to be reconstructed with a high degree of parallelisability.
The reconstruction process has two phases, the first of which is to find optimal, parallel
hyperplanes in the loops. The possible values that the index variables can take for a
given loop constitute a subset A of integral n-space N”, where n is the number of
nestings. An optimal hyperplane is an hyperplane in N” containing no data dependen-
cies, the details of which are given below, and that has a minimal number of translates
that contain at least one element of A. Once such an hyperplane H has been found,
the loop is reorganised so that each iteration of the outer most loop corresponds to
iterating over all those indices in A belonging to a translate of H. The result of this
phase is merely to reorder the sequence in which the iterations are performed, but so
that all the inner loops can be executed simultaneously, for each possible value of the
index variable in the outer loop. Since the same operations are being performed, the
result of the first phase has no effect on the numerical stability of the algorithm.
Moreover, the balance between the number of additions and multiplications enjoyed
by the Horner algorithm is preserved, thereby making the transformed code well suited
to execution on a vector computer with separate and independent functional units for
addition and multiplication.

The second phase is to represent the values of the various iterations of the code,
after the hyperplane transformation has been performed, as the solution of a lower
triagonal, linear system of equations. One then applies a variant of the standard,
numerical, cyclic reduction algorithm to solve this system in logarithmic time. Since
the technique used in this paper operates primarily on program code, it has much
wider applicability than merely to polynomial evaluation. With the Horner algorithm,
however, the linear system of equations that one obtains is known explicitly, so that
solutions can be computed very quickly.

Hitherto, the main problem with using vector and parallel computers was that the
Horner algorithm is difficult to parallelise. As a result, much work has been devoted
to finding completely new, parallel algorithms (cf. [2, p. 162]). Although such algorithms
generally achieve logarithmic complexity, it is not usually possible to implement them

* Received by the editors February 16, 1988; accepted for publication (in revised form) April 11, 1989.

+ Abteilung fiir Mathematische Optimierung, Institut fiir Angewandte Mathematik, Carolo-Wilhelmina
Universitdt zu Braunschweig, Pockelsstrasse 14, D-3300 Braunschweig, Federal Republic of Germany
(11041301@ DBSTU1.BITNET).

133

134 MICHAEL L. DOWLING

efficiently on extant computer hardware. In contrast, the first phase of the parallelisation
process presented in this paper is very effective for vector computers, while further
benefit can also be obtained by implementing the second phase for vector computers
with several processors.

Since parallel algorithms are constructed from sequential ones, the objective of
this paper is similar to that in [6], where it was shown that, if a sequential algorithm
requires k operations, then there is a parallel version that requires O(log, (d) - log, (k))
parallel steps. That result was improved by Valiant et al. in [14], where it was shown
that the same complexity can be achieved with the use of O((kd)®) processors for
some constant «, as opposed to the O(k'°®2“) required by Hyafil. The most efficient
lower bound known is max {log, d, log, k} (cf. [2]).

This paper is organised as follows. Section 2 introduces the method of hyperplane
parallelisation for the univariate, full Horner algorithm. Here the degree of program
loop nesting is only two, so that hyperplanes are merely straight lines, thereby making
the basic technique readily comprehensible without introducing unnecessarily compli-
cated terminology. It is this section that also introduces the notion of flow dependence
developed by Banerjee in [1]. The idea of using hyperplanes to parallelise sequential
code originated from [11], and was developed further in [3]. Having whole hyperplanes
of iterations execute concurrently is essential to applying the cyclic reduction technique
introduced in § 3, which begins with the univariate, simple Horner algorithm, where
the application of cyclic reduction is particularly direct. This section ends by applying
the same procedure to the full Horner algorithm after hyperplane parallelisation has
already been applied. The remaining two sections apply these techniques to the bivariate
case. Unfortunately, Horner evaluation for polynomials with »n indeterminates requires
n nested DO-loops; the idea of treating the bivariate case explicitly while only alluding
to the general case is therefore designed to simplify otherwise excessively complicated
notation. Proofs of the statements concerning arbitrary numbers of indeterminates can
readily be supplied using induction.

2. The hyperplane parallelisation. Recall that if p(x)=a,+ax+---+a;x? is a
polynomial function of the single variable x over the real number field, then the simple
Horner algorithm evaluates p at a point x according to the bracketing scheme:

p(x)=ao+(ay+:--+(as2t(ag+as-x)-x) «--)-x
This can be expressed as a recurrence formula:
b,.;=0 (initialisation),
b;=a;+ b, x, j=d,---,0.

The full Horner algorithm also evaluates all the derivatives p”’(x) at the point x, for
i=0,---,d, and amounts to a d-fold repetition of the simple Horner algorithm. The
resulting recurrence formulae are given below:
b{™V=a; forj=0,1,---,d }
; R initialisation
byl =0 fori=-1,0,---,d ()
and
b =b""V+b), - x wherej=d, d-1,---,iandi=0,1,---,d.

Ultimately, i|b{” = p'”(x), where p'”(x) denotes the ith derivatives of the polynomial
p,andi=0,1, - -, d; details can be found in [4]. Figure 1 depicts a possible FORTRAN
implementation, where it is presumed that the array B has already been initialised.

A FAST PARALLEL HORNER ALGORITHM 135

FIG. 1. A naive Horner code.

Remark. Since the dependencies amongst the data determine the parallelisability
of a code segment, it is necessary to include an explicit implementation here. If, for
example, the array B(I,J) above were to be coded as B(J), the code would still be
correct. However, the price for memory optimisation quite often is diminished perform-
ance as a parallel algorithm, as in the case in point (cf. [3]).The more redundancy
there is in the representation of the data in a parallel computer, the more ways there
are of addressing them without risk to the data’s integrity.

The loop in Fig. 1 is clearly not amenable to parallel execution as each iteration
requires the values of the previous iterations in order to proceed. It can, however, be
restructured for concurrent execution in 2(d + 1) parallel steps. To show this, the notion
of data dependence is required.

DerINITION. Two statements, s and ¢, are said to be flow dependent if s executes
before ¢, and ¢ uses a value computed during the execution of s.

In [1], Banerjee introduced three notions of data dependence, one of which is
that of flow dependence. Since the other two do not occur in the above code, they
shall not be discussed here. The key interest in data dependencies results from a
theorem, due to Banerjee, where it is shown that if the statements of a block of code
were to be permuted in a manner respecting the order of execution of dependent
statements, then both the original and the permuted code will always produce the same
output if given the same input. In particular, where there are no data dependencies
present, the order of execution is immaterial, so that there is no obstacle to concurrent
execution. These data dependencies have been exploited to good practical advantage
(cf. Kuck et al. [10]), and also provide a means of treating parallelisation problems
theoretically (cf. [3]).

If one considers the graph whose nodes correspond to the various iterates of a
loop such as that shown in Fig. 1, and whose directed edges correspond to data
dependencies, then the graph corresponding to the Horner code has nodes labelled
by pairs (i, j), where i=0, 1, - -, d and i =j = d, and where there are flow dependence
edges from nodes (i—1,j) to (i,j), and also from (i, j+1) to (i,j), whenever these
ordered pairs correspond to nodes. The graph corresponding to a polynomial of degree
five is illustrated in Fig. 2.

From this diagram, it is obvious why the implementation of the Horner code
above does not admit concurrent execution; the nested loop executes down each
column in turn, from left to right. As such, the loop iterates precisely along lines of
data dependencies, so that sequential execution is obligatory. By executing along the
diagonal lines, i —j = const., the obstruction to parallel execution vanishes. In this
simple, two-dimensional case, these lines constitute what more generally shall be called
optimal hyperlines. Transforming the loop so that these diagonal lines are parallel to
the j-axis, say via the unimodular transformation defined by setting k=j—i and I =},
circumvents the problem. The resulting code is therefore parallelised. It can readily
be seen that this transformation is indeed optimal in the sense of minimising the
number of parallel steps. The resulting code is given in Fig. 3.

Note that now the inner DO-loop has been completely freed of data dependencies
so that, for each value of the outer index K, the entire inner loop can be computed in

136 MICHAEL L. DOWLING

T T T
l
2::Ml

F1G. 2. The dependence graph of the full Horner code.

two parallel steps. The first step performs the multiplication while the second uses
the result of the multiplication to compute the sum, and this for all possible values
of L, for the current value of K. Execution is therefore completed in 2(d +1) parallel
steps, whereas at most d +1 processing elements are required. This revised code is
exactly equivalent to the original, so that it even yields the same, numerically insig-
nificant digits as the naive version. It shall soon be seen that this basic idea can be
applied to multivariate polynomials to show that the full multivariate Horner algorithm
also can be programmed with merely linear parallel complexity.

D01, K=D, 0, -1
DO 1, L =K, D-1
1 B(L-K,L)=B(L-K-1,L) + X*B(L-K, L+1)

F1G. 3. A revised Horner code.

3. A logarithmic reduction for univariate polynomials. The linear recurrence for-
mula for the simple, univariate Horner algorithm amounts to solving the bidiagonal
linear system of equations in Fig. 4.

The obvious solution is to observe that b; = a4, and b; = a;+x - b;,, foreach i <d.
This is the method used in both the code segments above, but, as before, each iteration
depends upon the value computed during the previous one, thereby precluding any
parallel processing. The solution is to apply the cyclic reduction algorithm for solving
tridiagonal systems in logarithmic time (cf. [8], [13] for details). For bidiagonal systems,
cyclic reduction uses each odd numbered row to eliminate the off-diagonal entry in
the even numbered row immediately below it. The result of this single parallel step is
indicated in Fig. 5.

b(l a,
-x 1
—x 1 bd—l Ay,
by, | =1 a,_
—x 1 - d. 2
) bo ao
-x 1

F1G. 4. The simple Horner linear system.

A FAST PARALLEL HORNER ALGORITHM 137

1 by a,
0 1 by, a,_+xa,
-X 1 by, Ag-2
-x* 0 1 A by | = a3 +xa,_,
-X 1 by_s Ay-4
2

—-X 0, 1, by_s a;_stxa,; 4

F1G. 5. The first step of cyclic reduction.

Note that now each odd numbered variable can be computed in a single, parallel
step once the even numbered variables are known. These, on the other hand, are
decoupled from the 6dd numbered variables, and satisfy a bidiagonal system of
equations of half the original size. Repeating the process, one readily sees that
4[log, (d +1)] parallel steps are required for the process to terminate, the factor of
four corresponding to the simultaneous multiplications and subsequent subtractions,
and to the fact that [log, (d +1)] iterations are required to reduce the system of linear
equations to the trivial system containing only a single unknown. The same number
of iterations are required for the subsequent substitutions, so that the total number of
iterations is 2[log, (d +1)], each requiring two parallel steps. Moreover, the steps
requiring the most processors are the first and the last, both of which require |(d +1)/2].

Remark. The application of cyclicreduction above is essentially the binary splitting
algorithm of Dorn (cf. [2, p. 132]).

One notes that, since powers of x accumulate in the off-diagonal entries as the
computation progresses, the cyclic reduction version of the Horner algorithm is only
stable for |x|=1. In contrast, the standard procedure will produce better results
whenever the coefficients decrease sufficiently rapidly as the degree increases. On the
other hand, where |x| <1, it is not always necessary to continue the recursion until the
bidiagonal system has been reduced to a scalar equation. Once x" has been reduced
to a value smaller than the rounding errors, the bidiagonal system may be regarded
as being diagonal, and so soluble in a single, parallel step.

The revised code for the full Horner algorithm executes the whole lines, j—i=k,
concurrently, while the input data required for each iteration are computed during the
(k —1)st iteration. The result is essentially a bidiagonal system, but with vector rather
than scalar unknowns, so that cyclic reduction can now be applied. More precisely,
the revised code can be written in FORTRAN-8X style as follows:

DO 1, K=D, 0, 1
1 B(*K,*) = B(*—(K+1),*) + X+B((*+1)-(K+1), (#+1)),

where B(*—K,*) corresponds to the (d —k+1)-dimensional vector B(L-K,L), and
where L=K, - - - ,D. (B(-1,K) has the value a,.) Let b’ and a'*’ denote the (d +
2)-dimensional vectors
bl {the value of B(L,K+L) if0=I1=d-k,

"o ifd—k+1=I1=d,
(k)={ak ifl=0,
! 0 otherwise.

and

a

Here, k and I denote the values of K and L, respectively. The code segment above
corresponds to the following vector recurrence formula

bgk):"b(lli-rl)+xb§k+l)+a(k), k=dad_1a“'30, I=1,"',d—k,

138 MICHAEL L. DOWLING

which in turn can be written in matrix form as in Fig. 6 where I denotes the

(d +1)x(d +1) identity matrix, and S is the shift operator, given by S(v);, =v,,, for

i<d+1, and S(v4.,)=0. Also, a* is the vector whose sole, nonzero component is
al®) = a,. In particular, (i|b,); = p'’(x), the ith derivative of p.

1 (D a(®
—(S+xI) 1 pld-b atd-n
—(S+xI) 1 . b(d.—z) = | a¢2

—(S+xI) 1 b©® 2©

FI1G. 6. A bidiagonal system for the full algorithm.

Applying cyclic reduction blockwise, the number of blocks is halved during each
reduction, so that the reduction phase termmates after [log, (d +1)] iterations. During
the kth reduction, the matrix —(S+ xI) accumulates in the subdiagonal blocks. This
is the lower tr1ag0nal matrix whose rth lower subdiagonal contains the rth term in the
expansion of (x+ 1)2 All of these matrices can be computed in a single, parallel step
from the currently computed entries. The number of nonzero entries in the right-hand
side vector blocks doubles durmg each iteration so that during the kth iteration,
(S+xI)2 e requires 2 additions, and hence k parallel steps using cyclic
doubling.

The second phase of the block, cyclic reduction algorithm entails the back substitu-
tion of —(S+xI)"*"'(a®") in the Q- blocks; a process that again involves 2* additions,
and hence k parallel steps. Note that the matrix entries of —(S+xI)~ 2" are known,
namely,

. r+i—j—1 .

(—1)'"’“(. .Jl)x’”“ if i=j,
i—j—

0 otherwise.

~(S+xI);=

This follows easily from the well-known formula,

(5)-G2) G200
b) \b-1) \b-2 b-1)
The resulting parallel complexity for the full, univariate Horner Algorithm is, therefore,

2(1+2+- - -+ [log,(d+1)]) = [log, (d +1)]([log, (d +1)]+1)

where the factor of two results from considering both the phases required by cyclic
reduction. Note that the maximal number of processors is |(d +1)/2]. During the first
step, |(d+1)/2] additions and multiplications are performed, one for every second
block. Thereafter, the number of blocks is halved during each step, while the number
of additions doubles, until 2/“*"/21 additions are performed in a single block. (Identical
blocks do not have to be computed more than once.)

4. The simple, multivariate, Horner algorithm. Evaluation of polynomials in several
variables hinges on the fact that any element fe R[x,, - - -, x,] can be regarded as an
element of R[x,, - * -, x,,_][x,], the ring of all polynomials in the single indeterminate,
X,, with coefficients in the polynomial ring R[x,, - - -, x,,_,]. The preceding discussion
of the univariate case therefore starts an inductive procedure for evaluating multivariate
polynomials. Moreover, this applies equally to the simple algorithm as to the full
Horner algorithm, which additionally computes all the partial derivatives.

A FAST PARALLEL HORNER ALGORITHM 139

The simple bivariate Horner algorithm for evaluating the polynomial

d . .
p(x,y)= % a;x'y’,

i+j=0

now corresponds to the linear recurrence formulae:
b;=0 fori+j=d+1,
bj=a;+x-by,y; fori=d-jd—j-1,---,1,} j=d,d-1,---,0,
boj=boj+x- bty byjsi,

the computational part of which can be naively implemented as in Fig. 7.

Do 1, J=D1, 0, 1
DO 2, I =D-J-1, -1
2 B(I,J) = A(I,J) + X+B(I+1,J)
1 B(0,J) = B(0,J) + Y+B(0,J+1)

F1G. 7. The naive, bivariate Horner code.

The data dependency graph for this nested loop has vertices in bijective correspon-
dence with the lower, triangular region {(i, j)|0= i =j = d}, having flow dependencies
from left to right between every pair of adjacent, horizontal vertices, and from top to
bottom between every pair of adjacent, vertical vertices lying on the Oth vertical column.
A corresponding, parallelising procedure similar to that of the full, univariate Horner
can now be applied again. This time, one readily recognizes that the lines i +j = const.
are devoid of data dependencies, and provide optimal parallelisation in that no other
choice of lines has fewer parallel translates with nonvoid intersections with the vertex
set. A possible, parallelising transformation therefore corresponds to the unimodular
change of variables k = i+ j, and | = j. The transformed code now takes the form shown
in Fig. 8.

DO 1, K=D, 0, -1
D02, L=0,K
2 B(K-L,L) = A(K-L,L) + X«B(K-L+1,L)
1 B(0,K) = B(0,K) + Y*B(0,K+1)

F1G. 8. The revised, bivariate Horner code.

Note that each iteration of K requires three successive steps: the simultaneous
multiplications, x - by_,+, 4, for each value of I, concurrently with the multiplication of
y with by, ; the simultaneous additions of the products to the a,_;;; and finally, the
addition on the last line. In general, where there are n indeterminates, all the multiplica-
tions can still be performed simultaneously, while the n additions can be performed
in logarithmic time. The resultant complexity of the parallelised algorithm is therefore
(d+1)([log, n]+17), using d +1 processors.

The revised Horner code admits another interpretation as a linear recurrence
formula as follows. Define e*’ and a'* to be (d +1)-dimensional vectors by setting

1 B(L,K- if I<k.
e(k)={vaues (L) i and

1 .
0 otherwise,

a(k)_{a,’k_, ifl<k,
! 0 otherwise.

140 MICHAEL L. DOWLING

Then, for k=d,d—-1,---,0,
el =xel* T+ ™ forl1=0,1,---,k—1, and
k) __ k+1 (k+1 k
ek = yel iV + xel "V + al,

which, in turn, can be represented as a block, tridiagonal system of linear equations,
with the (d +1)x(d +1) identity matrices I appearing along the main diagonal, the
diagonal matrices —xI along the first subdiagonal, and with —yE,, along the second
subdiagonal. Here, E,, denotes the matrix whose only nonzero element is a one in
the bottom right-hand corner.

Applying cyclic reduction blockwise, it is not difficult to see that each reduction
gives rise to a new system having half the number of blocks, but with —x*I and —y*E,,
accumulating along the first and second subdiagonals, respectively. The main difference
between the bivariate and univariate cases is that, for the bivariate case, the components
of the e{*) are coupled with two others, so that an extra addition is required for the
back substitutions. More generally, evaluating a degree d polynomial in n indetermin-
ates entails an n fold coupling, and hence an additional [log, n] parallel steps during
the back substitution phase.

For polynomials with n indeterminates, the iterations corresponding to values of
the index variables lying on the parallel hyperplanes H, = {(i;, - -, 1},)|ZZ=1 i, =k}
depend only upon those of the previous hyperplanes H,.,, so that cyclic reduction
applies and reaches completion after 2[log, (d + 1)] iterations. Each iteration requires
a single, parallel multiplication step, and n additions. The resulting complexity of the
logarithmically reduced algorithm is therefore 2[log, (d +1)] - ([log, n]+1); at most
O(d") processors are required.

5. The full, multivariate, Horner algorithm. Computing all the derivatives of the
bivariate polynomial p of the last section corresponds to implementing the following,
linear recurrence formulae:

by V=a; forall0sj=sk=d,
b =0 for0=j=k=d+1,k=0,---,d and fori=—1, j+k=d+1,
and
b =by V+x-bil, 0=sk=d-i, i<j=d-k
b =b"+x- bk +y- b, 0sks=d-i, 0=si=d.
b =b4i "+y- b, 0=j=si-1, d-jsk=si-j

It is not difficult to show that i|j|b}™ =6""p/ax'ay’. The significant section of such
recurrence formulae can be programmed as in Fig. 9.

D01, I=0,D
DO 2, K =0, D-I
D02, J=DK, I+1, -1
2 B(I,J,K) = B(I-1,J,K) + X*B(I,J+1,K)
D0 3, J=1I-1, 0, -1
3 B(I,J,K) = B(I-1,J,K) + X*B(I,J+1,K) + Y*B(I,J,K+1)
D01, J =0, I-1
DO 1, K = D-J, I-J, -1
1 B(I,J,K) = B(I-1,J,K) + Y*B(I,J,K+1)

F1G. 9. The naive, full, bivariate Horner code.

A FAST PARALLEL HORNER ALGORITHM 141

The vertices of the corresponding data dependence graph correspond to the region
in N’ bounded by the planes i=0, j=0, k=0, j+k=d, and j+k—i=0. There are
flow dependencies between adjacent vertices from the back to the front, and from the
top to the bottom, and also from the right to the left. The optimal, parallelising
hyperplanes are the hyperplanes j+ k —i = r, for some constant 0= r = d. In the general
case, the corresponding hyperplanes are given by the equation Z:=1 i, —i=const. The
hyperplane parallelisation procedure reduces the parallel complexity of the full, multi-
variate Horner algorithm to d +1 iterations, each of which requires [log, n] parallel
additions (cf. Fig. 10 below).

= B(S-R-1,S-T,T) + X*B(S-R,S-T+1,T) + Y+*B(S-R,S-T,T,T+1)

Fi1G. 10. The revised, full, bivariate Horner code.

To apply cyclic reduction once again, it is first necessary to represent the values
of B(R,S,T) appropriately as a vector, whereupon one observes that the resulting
linear difference equation is a block banded system, with n subdiagonal blocks, each
of which is a shift operator. Although the details are now unpleasant, it can now
nevertheless be seen that 2[log, (d +1)]([log,(d +1)]+ [log, n]+ 1) parallel steps are
required, while using O(d"*") processors.

6. Conclusion. The arguments presented here are evidence for the effectiveness
of considering the data themselves as the measure of parallelisability of an algorithm,
and the use of dependence graphs in algorithm analysis. The univariate and bivariate
linearised algorithms were both implemented on the Cray-XMP in Berlin, where, as
predicted, not only were the revised codes fully vectorised, but they also yielded the
same results to the point of replicating the numerically insignificant digits of the naive
code.

The table below shows the timing results of the naive and revised univariate
Horner codes. The former predictably has a quadratic execution time, whereas the
latter is almost linear. Any deviation from linearity is due to the fact that a vector
computer is not a genuine, parallel computer, since it still executes its instructions
strictly sequentially. Since the Cray compiler is not capable of vectorising more than
just the innermost loop, it is not sensible to time algorithms whose codes have a higher
nesting order, with two or more inner loops parallelised. For this reason, the full
logarithmic complexity of the multivariate evaluation algorithm could not be tested.
The times below are given in microseconds.

Degree: 16 32 48 64 80 96 112 128 144 160 178 192

Naive: 67 218 454 776 1183 1676 2253 2916 3665 4500 5419 6432
Revised: 24 49 78 110 149 187 229 273 323 376 431 488

REFERENCES

[1] U. BANERJEE, Speed-up of ordinary programs, Ph.D. thesis, University of Illinois, 1979.
[2] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

142 MICHAEL L. DOWLING

[3] M. L. DOWLING, A mathematical theory for code parallelisation, Ph.D. thesis, Carolo-Wilhelmina
Universitdt zu Braunschweig, Braunschung, FRG, 1987.
[4] P. HENRICI, Applied and Computational Complex Analysis, Vol. 1, John Wiley, New York, 1974.
[5] W.G. HORNER, Philosophical Transactions of the London Mathematical Society, 109 (1819), pp. 308-335.
[6] L. HYAFIL, On the parallel evaluation of multivariate polynomials, SIAM J. Comput., 8 (1979), pp.
120-123.
[7] D. E. KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley,
Reading, MA, 1969.
[8] D. KERSHAW, Solution of single, tridiagonal systems and vectorisation of the 1cCG-Algorithm on the
Cray-1, in Parallel Computations, G. Rodrigue, ed., Academic Press, New York, 1982.
[9] L. KRONSIO, Algorithms: Their Complexity and Efficiency, 2nd ed., John Wiley, New York, 1987.
[10] D. J. Kuck, R. H. KUuHN, B. LEASURE, AND M. WOLFE, Advanced, retargetable vectoriser, IEEE
Tutorial for Super-Computers: Design and Applications, K. Hwang, ed., 1984, pp. 186-203.
[11] L. LAMPORT, The parallel execution of DO-loops, Comm. ACM, 17 (1974), pp. 83-93.
[12] W. RONSCH, Stability aspects in using parallel algorithms, Paralle] Comput., 1 (1984), pp. 75-98.
[13] G. RODRIGUE, N. MADSEN, AND J. KARUSH, Odd-even reduction for banded linear equations, J.
Assoc. Comput. Mach., 26 (1979), pp. 72-81.
[14] L. G. VALIANT, S. SKkYUM, S. BERKOWITZ, AND C. RACKOFF, Fast parallel computation of polynomials
using few processors, SIAM J. Comput., 12 (1983), pp. 641-644.

SIAM J. COMPUT. © 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 143-155, February 1990 009

VERY SIMPLE METHODS FOR ALL PAIRS NETWORK FLOW ANALYSIS*

DAN GUSFIELDfT

Abstract. A very simple algorithm for the classical problem of computing the maximum network flow
value between every pair of nodes in an undirected, capacitated n node graph is presented; as in the
well-known Gomory-Hu method, the method given here uses only n —1 maximum flow computations. Our
algorithm is implemented by adding only five simple lines of code to any program that produces a minimum
cut; a program to produce an equivalent flow tree, which is a compact representation of the flow values, is
obtained by adding only three simple lines of code to any program producing a minimum cut. A very simple
version of the Gomory-Hu cut tree method that finds one minimum cut for every pair of nodes is also
derived, and it is shown that the seemingly fundamental operation of that method, node contraction, is not
needed, nor must crossing cuts be avoided. As a result, this version of the Gomory-Hu method is implemented
by adding less than ten simple lines of code to any program that produces a minimum cut. The algorithms
in this paper demonstrate that a cut tree of graph G can be computed with n—1 calls to an oracle that
alone knows G, and that, when given two nodes s and ¢, returns any arbitrary minimum (s, t) cut and its value.

Key words. network flow, combinatorial optimization
AMS(MOS) subject classifications. 90B10, 90B35, 90C35, 68Q25, 05C99

1. Introduction. For an undirected graph G with n nodes, Gomory and Hu [GH]
showed that the flow values between each of the n(n—1)/2 pairs of nodes can be
computed by solving only n — 1 network flow problems on G, saving a factor of n over
the obvious method. Furthermore, they showed that the flow values can be represented
by a weighted tree T on n nodes, where for any pair of nodes (x, y), if e is the minimum
weight edge on the path from x to y in T, then the maximum flow value from x to y
in G is exactly the weight of e. Such a tree is called an equivalent flow tree. They also
showed a stronger result, that there exists an equivalent flow tree, where for every pair
of nodes (x, y), if e is as above, then the two components of T —e form a minimum
cut between x and y in G. Such a tree is called a GH cut tree, and it compactly
represents one minimum cut for each pair of nodes. Figure 1 shows a three node graph
G, a cut tree T of G, and an equivalent flow tree T’ of G. Note that T’ is not a cut
tree of G. The method given in [GH] produces a GH cut tree using only n — 1 maximum
flow computations. This method is well known and is discussed in many texts and
surveys on graphs and network flows [H1], [H2], [LP], [FF], [FR, FR], [LP], [HA],
[PG], [VL], as well as in technical papers which build on it [AMS], [AH], [E], [H3],

3
1 2 1 2 1 ’ 02
7 4 10 7 10
3 3 3
(a) (b) (e)

F1G. 1. Graph G, a cut tree T, and an equivalent flow tree T'.

* Received by the editors August 17, 1987; accepted for publication (in revised form) April 7, 1989.
This research was partially supported by U.S. Census Bureau grant JSA 86-9 and National Science Foundation
grant CCR-880374.

+ Computer Science Division, University of California at Davis, Davis, California 95616.

143

144 DAN GUSFIELD

[HR], [HS], [SC], [S], [T], [GrH]. For a basic discussion of graphs and network flows,
see [FF], [L], or [H2]. For a textbook discussion of the GH method, see [H2] or [FF].

Two cuts (X, Y) and (U, V) are said to cross if all four set intersections, X N U,
XNV, YNU,and YNV, are nonempty. The Gomory-Hu method, and methods based
on it, require that all the cuts computed be pairwise noncrossing. Most of the work
of the method, other than the work involved in the maximum flow computations, is
involved in explicitly maintaining the noncrossing condition, or is a consequence of
that condition. In particular, the operations of node contraction and identification of
which nodes to contract, are consequences of the need to maintain noncrossing cuts.
In all discussions of the GH method that we know of|, both algorithmic and mathemati-
cal, the existence of noncrossing cuts has been fundamental to both the logic of cut
trees, and to the algorithms to find and use them.

The GH method is fairly involved and nontrivial to program. A different method
for computing all the flow values, and a cut tree, can be obtained by modifying a
method of Schnorr [SC] for a related problem on directed graphs. This method requires
O(nlog n) maximum flow computations, but it can be implemented to have an
amortized total running time of O(n*). However, the implementation is more complex
than the GH method, and to obtain the faster time bound, or to build cut trees, the
method also needs to maintain noncrossing (directed) cuts.

As for equivalent flow trees, in most of the published literature a full GH cut tree
is used even when only the flow values are required. However, after the results in this
paper were first obtained [GU1], we learned of a related method by Granot and Hassin
[GrH] which can easily be modified to produce an equivalent flow tree, but not a cut
tree. That method solves only n—1 maximum flow problems, and does not need to
maintain noncrossing cuts. Hence, that is the first paper we know of that indicated
that crossing cuts can be used in computing equivalent flow trees.

In this paper we give simple, efficient methods which show that crossing cuts can
be used in producing GH cut trees as well as equivalent flow trees. We first give an
extremely simple, efficient algorithm for producing an equivalent flow tree that is not
necessarily a cut tree; as in the GH method, only n —1 maximum flows are computed
by the method. The simplicity of the method comes from the fact that the method does
not need to avoid crossing cuts, and so does not need to contract nodes. We implement
the method by adding only three simple lines of code to any maximum flow program
that produces a minimum cut; the program can be extended to explicitly output the
n(n—1)/2 flow values, by adding only two additional lines of code. We next show
that with a modification of the Gomory-Hu cut tree method, noncrossing cuts need
not be maintained, and so the fundamental operation of node contraction is not needed,
and the intermediate cut trees need not be explicitly represented or searched. Hence,
the major programming and data structures details needed for the original GH method
can be avoided. As a result, any maximum flow program producing a minimum cut
can be converted to one that efficiently computes a GH cut tree, with the addition of
under ten simple lines of code. More generally, we show that noncrossing cuts, which
are central to all previous expositions on cut trees, are never explicitly needed in
efficient algorithms for finding either cut trees or equivalent flow trees.

2. Equivalent flow trees and all pairs maximum flow.

ALcoriTHM EQ. Input to the algorithm is an undirected capacitated graph G;
output is an equivalent flow tree T'. The algorithm assumes the ability to find a
minimum cut between two specified nodes in G.

NETWORK FLOW ANALYSIS 145

1. Create a (star) tree T' on n nodes, with node 1 at the center and nodes 2
through n at the leaves.

2. For s from 2 to n do steps 3 and 4.

3. Compute a minimum cut (X, Y) in G between (leaf) node s and its (unique)
neighbor ¢ in T'. Label the edge (s, t) in T’ with the capacity of (X, Y).

4. For every node i larger than s, if i is a neighbor of ¢, and i is on the s side of
(X, Y), then modify T’ by disconnecting i from ¢, and connecting i to s. Note
that each node i larger than s remains a leaf in T

It is easy to see that at every iteration, node s and all nodes larger than s are
leaves in T, so each chosen s has a unique neighbor, as expected by the algorithm.
Figure 2 gives an example of the algorithm. Figure 2(a) shows the graph G, and the
five cuts used by the algorithm; the capacity on each edge in G is one. Figure 2(b)
shows tree T' before any cuts are computed; Figure 2(c) shows the tree after the first
cut (1, 2) is computed; Figure 2(d) shows the final equivalent flow tree for G. Note
that in this example the (5, 1) and the (3, 1) cuts each cross the (1, 2) cut. Also note
that the equivalent flow tree T’ of Fig. 1 would be obtained from running Algorithm

EQ on the graph G of Fig. 1, illustrating the fact that Algorithm EQ does not always
produce a cut tree.

()]
]
(<)

1
1
"""""" f------F-- (5,1) and (6,2) cuts
1
G 1T i $ 2
........... E..--------- (3,1) cut
: l/ (4,2) cut
b+ <
3 Iz 4
'
1
(a)
2 2 3 2 2
o 3 40 4 0 3
6 3 60/—2 8 /2
1 4
60 < o 1 1¢
2
5 b 5
(b) () (d)

F1G. 2. Graph G, and the creation of equivalent flow tree T' for G.

146 DAN GUSFIELD

To show the extreme simplicity of this method, we present the following “program”
which implements Algorithm EQ. In the program, p is an n length vector initialized
to 1, at every iteration, every node i larger than or equal to s is a leaf, and p[i] indicates
its unique neighbor. The program takes in graph G and outputs a set of weighted
edges which form an equivalent flow tree T’ of G.

ProGrAM EQ.

for s=2 to n do

begin

Compute a minimum cut between nodes s and t:=pls] in G;

let X be the set of nodes on the s side of the cut.

Output the edge (s, t) and the maximum s, t flow value f(s, t).
for i== s ton do

if (i is in X and pl[i]=t) then p[il:=s;

end;

To produce all the n(n—1)/2 flow values, let F be an n-by-n array, initialized to
infinity, holding the flow values. Then insert the following lines before the “‘end;” above.

Fls, t]=F[t, s]l=f(s, t);
for i=1 to s—1 do
if (i () t) then F[s, i]l=F[i, s]=min(f(s, t), F[t, i]);

In addition to the simplicity of the algorithm, it is noteworthy that the only
interaction with graph G occurs inside the minimum cut routine. Hence, the algorithm
can be thought of as n—1 calls to an oracle which alone knows the structure of G.
Furthermore, for any given pair (s, t), if there is more than one minimum s-¢ cut, then
the oracle (or adversary) is free to choose one arbitrarily. Thus, an equivalent flow
tree for an unknown graph can be inferred from n—1 cut queries. We shall see that
this is true for the cut tree as well.

We will present below a short, direct proof of the correctness of Algorithm EQ.
A different, indirect, proof based on comparing the behavior of Algorithm EQ with
the GH method is given in [GU1]. Before presenting the direct proof, we state some
needed results initially shown in [GH].

LemMma 1 [GH].! Let (X, Y) be a minimum cut in G separating nodes x € X and
ye€ Y. Let u and v be two nodes on the X side of the cut, and let (U, V) be an arbitrary
minimum (u, v) cutin G. If ye U, then (U’', V')=(UUY, VN X) is a minimum (u, v)
cut, else (when ye V) (U', V')=(UNX, VUY) is a minimum (u, v) cut.

Figure 3 shows the two possibilities described by Lemma 1; cuts (X, Y) and (U, V)
are drawn with straight solid lines, and cut (U’, V') is drawn with a right angle, and
marked by hatch marks. Note that in Lemma 1, it does not matter whether x is in U
or in V; in Fig. 3 we have drawn x to be in U.

The importance of Lemma 1 is that it proves there always exists a minimum (u, v)
cut (U’, V') in G such that Y falls entirely on the u side or entirely on the v side of
(U', V). Hence (U’, V') does not cross (X, Y). The existence of a noncrossing cut
(U’, V') is all that is needed in the correctness proof of the original GH method, but
in this paper we use the following immediate, but key, corollary.

! The original lemma in [GH] is somewhat weaker, but the statement given here is explicitly stated and
proved in the body of the proof of the original version. For the easiest such proof of Lemma 1, see [FF, p.
179] or [H2, pp. 66-68].

NETWORK FLOW ANALYSIS 147

x|y X__Y
z z 1
Yy T
u u T
' T U
U Y U+
V' Illl__ v VI \%4
I v y
v -+
T

F1G. 3. The two cases of Lemma 1.

CoroLLARY 1. Let (X, Y), (U, V), and (U', V') be as in Lemma 1. Then the
minimum (u, v) cut (U’, V') does not cross (X, Y), and it splits X exactly the same way
that (U, V) does.

The following two facts are shown in [GH] (also in [FF] and [H2]) and are
simple to prove.

LemMMA 2 [GH]. Let f(x, y) denote the maximum flow value between nodes x and y.
If {vy, vy, , U} is a set of nodes in G, then f(v,, v,) Zmin [f(v;, v;41): i=1to k—1].

CoroLLARY 2 [GH]. Ifi,j, and k are three arbitrary nodes in G, then the minimum
of f(i, j), f(i, k), and f(j, k) is not unique.

2.1. Correctness of Algorithm EQ. Consider each edge (s, t) created in step 3 of
the algorithm to be directed from s to t; then all edges are directed from larger node
label to smaller node label, and hence T is a directed tree where every directed path
leads to node 1. For any path P (directed or not), let min (P) be the minimum weight
of the edges on P.

LEMMA 3. Suppose node i reaches node j by a directed path P[i,j] in the final T',
and suppose that (k,j) is a directed edge into j, where k is smaller (has smaller label)
than any node on P[i, j] except j. Then node i was a neighbor of j in T' at the time when
the (k,j) cut C was computed by Algorithm EQ. Furthermore, i is on the k side of C if
and only if k is on the directed path P[i,j] in the final T'.

Proof. At the start of the algorithm, node i is a neighbor of node 1 only. Then
until iteration i—1, when i is node s in step 2 of the algorithm, node i has exactly
one neighbor at any time, and the unique neighbor of i can change from v to w only
when v is t and w is s in step 2. Hence every node on P[i, 1] is a neighbor of i at
some point before iteration i—1, and no node not on P[i, 1] is. Then since j <k,
j must be i’s neighbor before the (j, k) cut C was computed. Furthermore, since k is
smaller than every node on P[i, j] except j, j must be the neighbor of i when C is
computed. Now if k is on P[i,j], then i surely is on the k side of C, and if k is not,
then i cannot be on the k side. 0

THeEOREM 1. Given input graph G, Algorithm EQ correctly computes an equivalent
flow tree T' for G.

Proof. First, note that if (x, y) is an edge in T', then Algorithm EQ computed an
(x, y) minimum cut, and its value is written on edge (x, y). Hence the tree is correct
for every pair of neighboring nodes in T'. Now we show that if (x, y) is an arbitrary
pair of nodes not connected by an edge in T', and P[x, y]={x=wv,," -+, v, =y} is the
path (ignoring edge directions) in T’ from x to y, then f(x, y) =min [f(v;, v;4,): i=1
to k—1]. Given Lemma 2, we need only to show that f(x, y) =min [f(v;, v;4,): i=1

148 DAN GUSFIELD

to k—1]. Suppose not, and let (x, y) be the pair with shortest path P[x, y] among all
pairs where f(x, y)> min (P[x, y]).

Case 1. Path P[x, y] is a directed path from x to y (the case when it is directed
from y to x is identical). Let v # x be the neighbor of y on P[x, y] (if x = v, the edge
(x,y) is in T'). By the minimality of P[x, y], f(x, v) =min (P[x, v]), and since f(x, y)
is assumed to be greater than min (P[x, y]), Corollary 2 implies that min (P[x, y]) =
f(x, v)=f(v, y). But by Lemma 3, the cut between nodes y and v found by Algorithm
EQ separates x and y, so f(x, y)=f(v, y) =min (P[x, y]), a contradiction.

Case 2. Path P[x, y] consists of two directed subpaths P[y, z] and P[x, z], where
P[y, z] is directed from y to z and P[x, z] is directed from x to z Node z can be
thought of as the least common ancestor of x and y in T’ when node 1 is the root.
Let x, be the neighbor of z on P[x, z] and let y, be the neighbor of z on P[y, z].
Assume that x; < y,, so in the running of Algorithm EQ the (x,, z) cut, C(x,, z), was
computed before the (y,, z) cut.

From Case 1 we know that f(x, z) =min (P[x, z]) and f(y, z) =min (P[y, z]), so
either f(x, z) or f(y, z) equals min (P[x, y]). Hence by the assumption that f(x, y)>
min (P[x, y]), Corollary 2 says that f(x, z) = f(y, z) =min (P[x, y]), and so there is an
edge of weight min (P[x, y]) on path P[x, z]. Let e = (u, v) be the edge closest to z
on P[x, z] with weight min (P[x, y]), let C(u, v) be the (u, v) cut of that weight found
by EQ, and let v be closer to z on P[x, z] than u is. Then by Lemma 3, x, u, and v fall
on the x, side of the cut C(x,, z) computed by the Algorithm EQ, and y falls on the
z side of C(x,, z). By Lemma 3 again, x falls on the u side of C(u, v), and from the
assumption that f(x, y) > min (P[x, y]), y must also fall on the u side. Figure 4 shows
the general situation. In particular, the positions of nodes u, v, x, and y are each
determined down to one of the four quadrants defined by the intersections of C(x,, z)
and C(u, v); the positions of nodes x, and z are each determined only to two quadrants.

C(xl, Z)
T
y
u
C(u,v)
v
z; side z side

F1G. 4. Case 2 of the proof of Theorem 1.

Now there are two cases for the position of z In either case, Lemma 1 can be
applied (recall that in Lemma 1 the only assumption on the position of x, is that it is
in X), yielding a minimum (u, v) cut C* that either separates x and y, or that separates
z and v. In particular, if ze U, then the quadrant containing v defines a minimum
(u, v) cut, and this cut also separates v and z; if z€ V, then the quadrant containing
u defines a minimum (u, v) cut that also separates x from y. But, the minimum (u, v)
cut has capacity min (P[x, y]), so if C* separates x and y, then f(x, y) =min (P[x, y]),

NETWORK FLOW ANALYSIS 149

and so f(x,y)=min (P[x, y]) as claimed. If C* separates v and z, then f(v, z)=
min (P[x, y]). But P[v,z] is a directed path in T’, so from Case 1, f(v,z)=
min (P[v, z]) and min (P[v, z]) > min (P[x, y]) by the selection of v, so f(v,z)>
min (P[x, y]). This gives a contradiction, and we conclude that f(x, y) =min (P[x, y]),
so f(x, y) =min (P[x, y]), and the correctness of Algorithm EQ is proved. 0

3. A simple algorithm for the GH cut tree. In this section we show how to modify
the GH method to avoid node contraction and the maintenance of noncrossing cuts.
The result is a very simple algorithm to find a GH cut tree. The key idea is to show
that although the original GH method must find in each step a minimum (u, v) cut
that does not cross any previously used cuts, a modification of the method permits
any minimum (u, v) cut to be used. The modified method will be proved correct by
showing how its execution simulates a possible execution of the original GH algorithm.

DeriniTION. Forasubset N, of nodes of G, the contraction of N; is the replacement
of the nodes of N; by a single node c;, and for each node ve G — N, the replacement
of the edges from v to N; with a single edge from v to ¢;; the capacity of edge (v, ¢;)
is the sum of the capacities of the removed edges incident with v.

3.1. The Gomory—Hu method.

Input: An n node capacitated undirected graph G.

Output: A GH cut tree T for G.

1. Set T to be a single “‘supernode’ containing every node of G. Then iterate the
following step until every supernode contains only one node of G.

2. Pick a supernode S containing more than one node of G, and pick two nodes
u and v in S. Find all the connected components of T— S and let N; be the
set of nodes of G contained in the supernodes of the ith connected component
of T —S. Successively contract the nodes in each set N; in G, and let G(S) be
the resulting graph; note that the nodes in S are not contracted. Compute the
maximum flow from u to v in G(S). Let f(u, v) be the value of the (u, v) flow,
and let C(u, v) be a minumum cut between u and v in G(S). Let S, be the
supernode containing the nodes of G in S which fall on the u side of C(u, v),
and let S, be the supernode containing the remaining nodes of S. Modify T
by replacing supernode S with S, and S,, connected by an edge of weight
f(u, v). Any edge (S, S’) incident with S in T is now moved to be incident with
S, if S"is in a contracted node of G(S) on the u side of C(u, v), and is moved
to be incident with S, if S’ is in a contracted node of G(S) on the v side of
C(u, v); note that the weights of all the edges remain unchanged, including
those edges which were moved.

The existence of noncrossing cuts, stated earlier in Lemma 1, provides justification
for the contraction operation in the GH method. That is, in order to find a minimum
(u, v) cut in G, it is permissible to contract Y; a minimum (u, v) cut in the graph with
Y contracted defines a minimum (u, v) cut in G, and of course, the two cuts have the
same capacity. Applied iteratively from the leaves of T to S, the lemma can be used
to show that a minimum (u, v) cut (for u and v in S) in the contracted graph G(S),
has the same capacity as a minimum (u, v) cut in G. Such a cut will of course not
cross any previously found cuts, and is desired in the GH method because it is then
easy to see how to use that cut to split S and how to reconnect the supernode neighbors
of Sto S, and S,.

3.2. Crossing cuts can be used to split a supernode. Consider the basic step in the
GH method of dividing a supernode S by computing a minimum cut C(u, v) between

150 DAN GUSFIELD

u and v in the contracted graph G(S). This step does two things: it decides how to
split S into two new supernodes S, and S,, and it decides how to reconnect the
neighbors of S to the supernodes S, and S,. In this section we will show how the GH
method can use crossing cuts in carrying out the first decision.

DEeFINITION. A pair of nodes (x, y) is called a cut pair for an edge e of an
intermediate cut tree T if the nodes of G in the two connected components of T—e
form a minimum (x, y) cut in G.

For the following lemma, let T be an intermediate tree produced by the GH
algorithm, with e an edge in T between two supernodes S and S'. Let (x, y) be a cut
pair for edge e, with xe S and y€ S’; let u and v be any nodes in S, and let C(u, v)
be a minimum (u, v) cut in the contracted graph G(S) defined from T —S. Let S, and
S, be the new supernodes created from S, and let T be the updated intermediate tree
given by the GH algorithm.

LeEMMA 4 [GH].> The pair (u, v) is a cut pair for the edge between S, and S,, in
T. Assume x € U (the case when x € V is symmetric). If (S', S,) is an edge in T, then
(x, y) is a cut pair for it, and if (S', S,) is an edge in T, then (v, y) is a cut pair for it,
inT.

Initially we will need only the following simpler version of Lemma 4, which
follows easily by induction on the number of iterations of the GH algorithm.

CoroLLARY 3 [GH]. Let T be an intermediate tree in the computation of a GH
cut tree, and let e be an edge in T between two supernodes S and S'. Then there is a pair
of nodes (x,y) with xe S and y€ S’ such that (x, y) is a cut pair for e.

Lemma 4 and its corollary are not as simple as they might at first seem, since x
and y may not be the nodes used in the flow that created e, and the nodes that were
used might not be in the current supernodes S or S’ in T.

We are now ready for the major theorem of this section.

THEOREM 2. Let u and v be two nodes of G in supernode S of an intermediate
GH tree T. If (U, V) is any minimum (u, v) cut in G (withue U and ve V), then there
exists a minimum (u, v) cut (C,, C,) in the contracted graph G(S) (with ue C, and
ve C,) such that SNU =SNC, and SN V=SSN C,, and such that the capacities of the
two cuts are the same.

Hence to determine how S could be split in a step of the GH method, we need
not compute a cut in the contracted graph G(S), but rather use the split of S created
by a minimum cut splitting S in the original graph G.

Proof of Theorem 2. By Corollary 3, for each i from 1 to k, C;=(G — N,, N,) is
a minimum cut separating some node in G— N; from some node in N, since Sc
(G- N).

We now apply Corollary 1 to cuts C, and (U, V). Corollary 1 implies that there
is a minimum (u, v) cut (U,, V;) with the same capacity as (U, V), such that N, < U,
or N, c V,,andsuchthat (G— N,)N U =(G— N,;)N U,.Since S< (G — N,), it follows
that SN U=SNU, (and SNV=SNV,).

Now consider the cut C,=(G— N,, N,). Since N, and N, are disjoint, and
S< G— N,, it follows that SU N, = G — N,. Hence, by Corollary 1 there is a minimum
(u, v) cut (U,, V,) derived from cuts C, and (U,, V;) such that

1. (U,, V,) has the same capacity as (U,, V,) and hence as (U, V).

2. N2 U, or N,c V,.

2 As with Lemma 1, the statement and proof of Lemma 4 is found in the body of a proof of a different
proposition in [GH], [FF], and [H2]. The simplest such proof of Lemma 4 appears in [FF, p. 182] or [H2,
pp. 71-73].

NETWORK FLOW ANALYSIS 151

3. (G-N,)NU,=(G—-N,)NU,,s0o Ny U,or N,c V,and N, c U, if and only
if Ny U,.

4. SNU,=SNU,=SNU (and SNV,=SN V).

Continuing in this way, using the fact that N; is disjoint from S and from each
N;:j=i—1, we can inductively apply Lemma 1 to cuts C; and (U,_,, V,_;) (the cut
obtained in iteration i —1) to obtain a minimum (u, v) cut (U;, V;) with the properties
that

1. (U, V;) has the same capacity as (U, V).

2. SNU;=SNU (and SNV, =SN V).

3. (G=-N)NU,=(G—-N;)NU,_;,soforall j=i, Nyc U;or Ny V;and N,c U,

if and only if N;< U,.

We conclude then that SN U, =SN U (and SN V,=SN V), and that for each
i=k, N;c U, or N;c V,, and (U, V) has the same capacity as (U, V). Now since
each N, is strictly on one side or the other of (U, V,), it clearly defines a (u, v) cut
(Cy, C,) in G(S) of the same capacity, and the theorem is proved. 0

COROLLARY 4. For all j, N;< Uy if and only if N; < U,.

This corollary, and the last part of line labeled 3 above are not needed in the
proof of Theorem 2, but will be needed later.

3.3. Reconnection despite crossing cuts. Theorem 2 shows how to determine, using
the original G instead of a contracted graph, a split of S that the GH algorithm could
have found. However, a minimum (u, v) cut C in G might split a set N; between the
u and v sides of C (i.e., might cross a previous cut); the GH algorithm has no rules
to deal with such cuts. In this section we will see how to use crossing cuts to reconnect
the neighbors of S to S, and S,.

3.3.1. Modifying the GH cut tree method. We first modify the GH method so that
in every intermediate tree, every supernode S contains exactly one node called the
representative of S, denoted r(S). We start by arbitrarily declaring some node to be
the representative of the first supernode of the GH method (the set of all nodes of
G). We then impose the rule that when any supernode S is to be split, the flow
computed must be between r(S) and some other node v of S. After S is split into two
supernodes S,s) and S,, r(S) is the representative of S, and v becomes the
representative of S,. It is then easy to see inductively that each supernode has exactly
one representative. With this modification, successive application of Lemma 4 yields
Lemma 5.

LEMMA 5. Let T be an intermediate cut tree with S and S’ any two adjacent supernodes
in T; let N; be the connected component of T — S containing S'. Then (G— N;, N;) is a
minimum cut in G separating r(S) and r(S'). That is, (r(S), r(S')) is a cut pair for the
edge in T between S and S'.

For the statement of the following theorem, let S and N; for j = k be as in Theorem
2, and for j =k, let y; € N;, x; € (G — N;) be such that (G — N;, N;) is a minimum (x;, y;)
cut in G (by Corollary 3, such an (x;, y;) exists). Also, for u and v in S, let (U, V) be
any minimum (u, v) cut in G, and let (U, V,) be the minimum (u;, v) cut obtained
from (U, V) as in the proof of Theorem 2.

THEOREM 3. For a fixed j, if x; = u, then N; < Uy if and only if y;e U.

Proof. Corollary 4 says that N;< U, if and only if N;< U;. So all that must be
proved is that N;< U; if and only if y; € U, assuming that u = x;. Now if u = x;, then
x;€ Uj_, (since SN U =SSN U,_,), so Lemma 1 says that y; € U; if and only if y;€ U;_,.
But y;€ Ny (G- N,_;),and (G- N;_;))NU;,_;=(G - N;_;)N U;_,, so y;€ U;_, if and
only if y;e U;,_,. Now y;e (G- N,) for all p<j, so we can induct as above to get

152 DAN GUSFIELD

(G=-N,)NU,=(G—N,)NU,_,,s0 y;e U, if and only if y; € U,_, for all p <j. Hence,
assuming that x;=u, it follows that y;e U, if and only if y;e U, and otherwise,
Vi€ Vi 0

Theorem 3 is the key to reconnecting neighbors of S after S is split by a crossing cut.

CoROLLARY 5. For S a supernode in an intermediate tree T produced by the modified
GH method, and for v# r(S), let (U, V) be any minimum (r(S), v) cut in G. The
following rule correctly decides whether a neighbor of S, S', in T should be connected to
S.sy orto S,: If r(S’) is on the r(S) side of (U, V), then connect S’ to S,s,, else to S,.

Proof. By Lemma 5, when the modified GH method is used, r(S) satisfies the
conditions required of x;, namely, that 7(S) € G — N, the cut (N;, G— N;) is a minimum
(r(8), r(S;)) cut, where S; is the supernode neighbor of S in N;. Furthermore, in the
modified GH method, u =x; = r(S) for every j. Hence Theorem 3 implies that there
exists a minimum (u, v) cut (U, Vi) in G(S) such that for every j, N;< U, if and
only if r(S;) € U. Such a cut (Uy, V) could have been computed by the GH algorithm,
and so the corollary follows. 0

3.3.2. The method in brief. Theorem 2 and Corollary 5 form the basis of our simple
version of the GH method. Initially, node 1 is the representative of the supernode
consisting of all the nodes. When splitting a supernode S, compute an arbitrary
minimum cut in G between #(S) and any other node v in S. The nodes of $ which
fall on the v side of the cut form a new supernode S, with representative v, and the
other nodes in S remain in S, s, with representative r(S); if S’ is a supernode neighbor
of S in T before the split, and r(S’) falls on the v side of the cut, then replace the
(S, S') edge with edge (S,, S).

3.4. A simple complete cut tree program. To demonstrate the simplicity of our
version of the GH method, we give the following program to compute a GH cut tree
of input graph G. Theorem 2 and Corollary 5 allow great flexibility in the order in
which supernodes are split, but for simplicity, the program below chooses s nodes in
order from 2 to n. As in program EQ, p is an n length vector initialized to 1. At iteration
s, p[s] is the representative of the supernode that s is in. The edges of T are the final
pairs (i, p[i]) for i from 2 to n, and edge (i, p[i]) has value fI(i). If each edge is
considered a directed edge from i to p[i], then T forms a directed tree where every
node leads to node 1.

Cutr TREe PrRoGRAM MGH.

for s:==2 tondo
begin
Compute a minimum cut between nodes
s and t=pl[s] in G; let X be the set of nodes on the s side
of the cut. Output the maximum s, t flow value f(s, t).
fl[s]=f(s, t);
for i=1 to n do
if (i()s and i is in X and p[il=t) then p[i]:=s;
if (p[t] is in X) then

begin
plsl=plt];
pltl=s;
flls]="rf1[t];
fllt]="f(s, t);
end;

end;

NETWORK FLOW ANALYSIS 153

We use the convention that the name of a supernode is given by the name of its
representative, and note that after iteration i — 1, nodes 1 through i are representatives
of supernodes, and no node j>i is a representative node in supernode p[j]; so for
every node j> s, p[v] indicates the representative of the supernode that v is in. Every
supernode other than 1 points (with the p vector) to exactly one other supernode, and
hence if x is a supernode other than 1, then its neighbors consist of those supernodes
pointing to x, plus p[x], the supernode to which x points. The neighbors of supernode
1 are just those supernodes with p value 1, i.e., those supernodes that point to 1. During
the ith iteration, node i+1 becomes the representative of a supernode labeled i+1,
and all representatives which point to p[i+ 1] and which fall on the i+ 1 side of the
(i+1, p[i+1]) cut are now made to point to i+ 1. Since the intermediate trees are
being kept in an n-length vector, not an adjacency list, the only subtle part of the
program occurs after a flow from s=i+1 to ¢t=p[i+1] if ¢ points to a supernode
neighbor x of f, and x falls on the s side of the (s, #) cut. In that case we make ¢ point
to s, and s point to x; otherwise, s remains pointing to .

To explicitly accumulate the maximum flow values between all the pairs, we simply
add the same two lines of code shown after algorithm EQ; the lines are added just
before the final end. This is correct, because the set of (s, ¢) flow pairs generated in
MGH is clearly a set that could have been generated in EQ. This accumulation of flow
values can also be shown to be correct strictly in the context of the GH method, but
was not obvious and was observed only after the discovery of algorithm EQ. Without
this observation, a simple O(n”) method to explicitly calculate the n(n—1)/2 flow
values is to do depth first search on the final cut tree, so that when backing up from
a node x to y, the flow fI(y, z) from y to a descendent z of x can also be computed
as the minimum of fI(x, y) and fI(x, z). While this depth first search is not difficult, it
requires a change in how T is represented, and the above two-line approach is certainly
much simpler.

Note that, as in Algorithm EQ, the only interaction with G is in the minimum
cut routine, so the tree could be inferred from n—1 calls to an oracle which returns
a minimum cut and its value.

Relation with Algorithm EQ. The modified GH method can be described in
terms of Algorithm EQ. To compute the GH tree, change step 4 of Algorithm EQ
to read:

4. For every node i other than s, if i is a neighbor of ¢, and i is on the s side of

(X, Y), then modify T’ by disconnecting i from ¢, and connecting i to s, labeling
the new (i, s) edge with the label from the old (i, t) edge.

Phrases in italics show the differences between this step 4 and the step 4 of
Algorithm EQ.

4. Additional comments and extensions. (1) Itis easy to underestimate the amount
of programming detail needed by the original GH method. In fact, the ideas leading
to this paper partly began after a failed attempt to quickly implement the method. The
implementation was made more difficult because we used existing code for finding the
maximum flow, but we did not understand the code well, and we needed to modify
it to implement graph contraction and expansion. With the modified GH method of
this paper, we totally avoid these difficulties, since we never touch any of the existing
code, and never touch the graph after it is input.

In addition to the obvious work involved in contraction, an implementation of
the original GH method must do a fair amount of work implied by the need to do

154 DAN GUSFIELD

contraction. It must maintain T in a way so that the connected components can be
efficiently found, and so that the nodes of G contained in particular supernodes of T
can be identified, both to split a supernode, and to properly contract the nodes of G
contained in a component of T—S. It must also maintain information about the
connected components of T — S, or it must reexpand components after a flow, so that
it can determine which supernodes fall on the u side and which on the v side of the
cut C(u, v) in G(S).

(2) The original GH method might run faster in practice than the modified method
(although the worst case asymptotic time is the same), since the contracted graphs are
smaller than the original graph. However, it is an empirical question whether the
speedup in flow computation compensates for the work needed to implement contrac-
tion and all the associated work implied by contraction; contraction should be seen
as a heuristic that might accelerate the performance of the program.

(3) Some of the ideas in this paper have been extended and used to study the
structure of minimum cuts in three other settings. A GH cut tree represents at least
one minimum cut for each pair of nodes in an undirected edge-weighted graph. In
[GN1] we generalize the GH cut tree, showing how to efficiently and compactly
represent all minimum cuts between each pair of nodes. Interestingly, our method is
based on equivalent flow trees, rather than on cut trees, further extending the importance
of efficient computation of equivalent flow trees. This work also connects to and builds
on recent work by Matula [M] and by Mansour and Schieber [MS] on computing
connectivity quickly. In related work [GN2] we show how to construct with O(n)
maximum flow computations a cut tree for weighted node cuts, rather than edge cuts.
We also show how to compactly represent weighted edge cuts in a directed graph.

(4) Very recently, Cheng and Hu [CH] have further reduced the importance of
noncrossing cuts in equivalent flow trees. In Algorithm EQ and in the algorithm from
[GrH], crossing cuts are allowed, but the proofs of correctness still use the fact that
noncrossing cuts exist. Cheng and Hu give a different method which uses only n—1
maximum flow computations, and can be used to produce equivalent flow trees, but
not cut trees. However, its proof of correctness does not even depend on the existence
of noncrossing cuts. Because of that, their method can be used to represent minimum
cut values where the value of a cut is given by an arbitrary function, i.e., is not the
sum of the edge capacities crossing the cut. It is not difficult then to use this method
to improve the problem considered in Schnorr [SC]. For a pair of nodes (i, j) define
B(i,j) as the minimum of the flow in a directed graph from i to j, or from j to i. These
B values are needed in several problems [GN2], [GU]. Schnorr shows, using a very
clever idea, that all the pairwise B8 values can be computed with O(n log n) maximum
flow computations on the original graph. He then modifies that method to show that,
with contraction, those O(n log n) flows run in total time O(n*). However, using the
method of [CH] with its relaxed notion of cut values, the 8 values can be computed
using only O(n) maximum flow computations [GN2]. Hence in Schnorr’s problem,
contraction can also be avoided without sacrificing efficiency.

5. Conclusion. We have shown how to efficiently construct equivalent flow trees
and GH cut trees without finding or maintaining noncrossing cuts, hence without node
contraction and its associated work. The main theoretical consequence is conceptual
clarity: node contraction, which is presented in existing discussions of the GH method
as the fundamental algorithmic idea, is in fact not fundamental to cut tree computation;
it should be seen as a heuristic which might accelerate the running of the flow
computations. Similarly, although the existence of noncrossing cuts remains central in

NETWORK FLOW ANALYSIS 155

the logic of cut trees, they are not explicitly needed in the efficient computation of cut
trees. An additional theoretical consequence is the fact that a cut tree can be inferred
from n—1 queries of an oracle which alone knows the actual graph. On the practical
side, the import of these observations is that they lead to very simple, efficient programs
for computing equivalent flow trees and cut trees; most of the programming and data
structure details of the original GH method become unnecessary when contraction is
avoided.

[AH]
[AMS]
[CH]
(E]

[FF]
[FR, FR]
[GH]
[GrH]
[GU]
[GU1]

[GN1]

[GN2]
[HA]
[H1]
[H2]
[H3]
[HR]
[HS]
[L]
[LP]
[M]
[MS]
[PG]
[SC]
[S]
[T]

[VL]

REFERENCES

D. ApoLPHSON AND T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math., 25 (1973), pp.
403-423.

S. AGARAWAL, A. K. MITTAL, AND P. SHARMA, Constrained optimum communications trees and
sensitivity analysis, SIAM J. Comput., 13 (1984), pp. 315-328.

C. K. CHENG AND T. C. Hu, Maximum concurrent flow and minimum ratio cut, Tech. Report
CS88-141, University of California, San Diego, CA, December 1988.

S. E. ELMAGHRABY, Sensitivity analysis of multi-terminal network flows, J. ORSA, 12 (1964), pp.
680-688.

L. R. FORD AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

H. FRANK AND I. T. FrRISCH, Communication, Transmission and Transportation Networks,
Addison-Wesley, Reading, MA, 1972.

R. E. GomoRrY AND T. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math., 9 (1961), pp.
551-570.

F. GRANOT AND R. HASSIN, Multi-terminal maximum flows in node capacitated networks, Discrete
Appl. Math., 13 (1986), pp. 157-163.

D. GUSFIELD, A graph theoretic approach to statistical data security, SIAM J. Comput. 17 (1988),
pp. 552-571.

, Very simple algorithms and programs for all pairs network flow analysis, Tech. Report
cse-87-1, Division of Computer Science, University of California, Davis, CA, April 1987.

D. GUSFIELD AND D. NAOR, Extracting maximal information about sets of minimum cuts, Tech.
Report cse-88-14, Division of Computer Science, University of California, Davis, CA, Septem-
ber 1988.

, Generalized cut trees: Efficient algorithms and uses, Tech. Report cse-89-5, Division of
Computer Science, University of California, Davis, CA, March 1989.

W. HANSJOACHIN, Ten Applications of Graph Theory, D. Reidel, Boston, MA, 1984.

T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.

, Combinatorial Algorithms, Addison-Wesley, Reading, MA, 1982.

, Optimum communication spanning trees, SIAM J. Comput., 3 (1974), pp. 188-195.

T. C. Hu AND F. RUSKEY, Circular cuts in a network, Math. Oper. Res., 5 (1980), pp. 362-373.

T. C. Hu AND M. T. SHING, Multiterminal flows in outplanar networks, J. Algorithms (1983), pp.
241-261.

E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

L. LovAasz AND M. D. PLUMMER, Matching theory, Ann. Discrete Math., 29 (1986), North-
Holland, Amsterdam, the Netherlands.

D. MATULA, Determining edge connectivity in O(nm), in Proc. 28th Annual IEEE Symposium
on Foundations of Computer Science, October, 1987.

Y. MANSOUR AND B. SCHIEBER, Finding the edge connectivity of directed graphs, J. Algorithms,
10 (1989), pp. 76-85.

D. PHILLIPS AND A. GARCIA-D1AZ, Fundamentals of Network Analysis, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

C. P. SCHNORR, Bottlenecks and edge connectivity in unsymmetrical networks, SIAM J. Comput.,
8 (1979), pp. 265-274.

Y. SHILOACH, A multi-terminal minimum cut algorithm for planar graphs, SIAM J. Comput., 9
(1980), pp. 219-224.

L. E. TROTTER, JR. On the generality of multi-terminal flow theory, Ann. Discrete Math., 1 (1977),
pp. 517-525.

J. VAN LEEUWEN, Graph algorithms, Tech. Report RUU-CS-86-17, Department of Computer
Science, University of Utrecht, Utrecht, the Netherlands, October 1986.

SIAM J. COMPUT. (©1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 156-163, February 1990 010

ON THE EXPECTED CAPACITY OF BINOMIAL
AND RANDOM CONCENTRATORS*

EDWARD R. SCHEINERMAN+}

Abstract. Masson and Morris [G.M. Masson and S.B. Morris IEEE Trans. Comput. C-
32 (1983), pp. 649-657] introduced the notion of expected capacity of a concentrator and explicitly

computed the expected capacity of (;)-concentra.tors for values of n up to 15. In this article, tools

from random graph theory are employed to find asymptotic expressions for the expected capacity
for this class of concentrators. It is shown that the same results can be obtained by concentrators
that are constructed at random. It also is shown that the expected capacity of random concentrators
is slightly inferior to the expected capacity of Pippenger’s modular concentrators [N. Pippenger,
Exzpected capacity of modular concentrators, preprint], and that random concentrators have certain
advantages over deterministic designs. Finally, it is shown that expected capacity of a concentrator
is actually a useful performance measure because the capacity of almost all input sets is very near
the expected capacity.

Key words. concentrator, random graph

AMS(MOS) subject classification. 05C80

1. Introduction. A concentrator is an interconnection network with m inputs
and n outputs. Internal switches in this network enable inputs to be connected to the
outputs. The capacity of the concentrator is the greatest integer k such that every
k-element subset of the m inputs can be connected along disjoint channels to k of the
n outputs.

More formally, the concentrators we consider are bipartite graphs I' = (X U
Y, E), where X represents the set of inputs, Y the set of outputs, and E the switches
connecting inputs to outputs. Such concentrators are also known as single-stage sparse
crossbar networks. The capacity is the largest k& such that every k element subset of
X can be matched into Y. This definition of capacity provides a worst-case bound on
the number of inputs the concentrator can serve. In [5] a notion of expected capacity
was introduced.

Let the graph I' = (X UY, E) be fixed. For a given subset K C X of the inputs,
let capg (I') denote the maximum size of a matching from K into Y. The ezpected
capacity ex(T"), corresponding to input size k, is the average of capg (I') over all subsets
K C X of size k, each taken as equiprobable. That is,

D) = e 3 capg(D).
(k) KCX:|K|=k

In both [5] and [6], the authors consider rather sparse concentrators. In particular,
each input is connected to exactly two outputs; thus the degree of each X-vertex
is exactly 2. Therefore, given a (not necessarily bipartite) graph G, we define a
concentrator (bipartite graph) I' = T'(G) as follows: The inputs (X-vertices) of T'
correspond to the m edges of G and the outputs (Y-vertices) of I correspond to the

*Received by the editors October 17, 1988; accepted for publication (in revised form) February
17, 1989. This work was supported in part by the Office of Naval Research, contract N00014-85-
K0622.

tDepartment of Mathematical Sciences, The Johns Hopkins University, 3400 N. Charles Street,
Baltimore, Maryland 21218 (ers@crabcake.cs.jhu.edu).

156

CAPACITY OF BINOMIAL AND RANDOM CONCENTRATORS 157

n vertices of G. We have a switch connecting z to y (i.e., zy € E(I')), provided the

edge of G corresponding to z is incident with the vertex of G corresponding to y. See
Fig. 1(a)-(c).
) 2 3 4 5 6 7 8

7 1

T

4. g

Fic. 1(a). The graph G.

F1G. 1(b). Concentrator I'(G) in bipartite graph form.

Inputs
1 2 3 4 5 6 7 8

abcde f g
Outputs

Fig. 1(c). Concentrator I'(G) in crossbar form.

In [5] and [6] the concentrators I = I'(G) arise from considering different choices
for G. In [6] Pippenger chooses G as a particular 3-regular graph of high girth. These
concentrators are called modular (3:2)-concentrators. They have 3n/2 inputs and for

158 E. R. SCHEINERMAN
k < 3n/4, they have ey ~ k. For larger values of k the expected capacity falls off a
bit, but still gives good performance (see Table 1).

TABLE 1
Ezpected capacity of modular and random concentrators.

Input Expected Capacity e
Size
k Modular Random

0.10n 0.100007 0.100007

0.50n 0.50000n 0.50000n
0.60n 0.60000n 0.59630n
0.70n 0.70000n 0.67839n
0.75n 0.75000n 0.71335n
0.80n 0.79902n 0.74452n
0.90n 0.88148n 0.79686n
1.00n 0.93750n 0.83810n
1.10n 0.97115n 0.87060n
1.20n 0.98906n 0.89628n
1.30n 0.99709n 0.91665n
1.40n 0.99967n 0.93285n
1.50n 1.000007n 0.94579n

1.60n — 0.95616n
1.70n o 0.96448n
1.80n undefined 0.97118n
1.90n for 0.97659n
2.00n k>3n/2 0.98096n
2.50n — 0.99314n
3.00n — 0.99750n

In [5] Masson and Morris use G = Kj,, the complete graph on n vertices. These
concentrators are called binomial or (Z)-concentrators. Masson and Morris explicitly
compute e (') for their concentrators with 0 < k¥ < n < 15. They found that ey is
generally very close to k.

In this paper we give asymptotic expressions for e; in binomial concentrators.
Further, we show that the expected capacity of binomial concentrators is the same
as the expected capacity of “random” concentrators. We note that the expected
performance of random concentrators is just slightly inferior to that of the modular
(3:2)-concentrators of [6]. In the last section we show that expected capacity of a
concentrator is actually a useful performance measure by showing that the capacity
of almost all input sets is very near the expected capacity.

2. Expected capacity of (;)—concentrators. We first focus our attention on
the crossbar considered in [5], I' = I'(K,) where n is large.
THEOREM 1. Let ¢ be a constant, k = |cn/2] and T = I'(Kn). Ifc < 1 then

CAPACITY OF BINOMIAL AND RANDOM CONCENTRATORS 159

ex(T) ~ k but if ¢ > 1 then ex(T) ~ [1 — u(c)]n, where

oo

u(e) = Z

k:

(ce*c

The key to proving this theorem is to apply known results from the theory of
random graphs, a notion introduced by Erdés and Rényi in [3]. Given positive integers
n and m, observe that there are (ﬁ) labeled graphs on n vertices and m edges where
N = ('2‘) Let G(n, m) denote the sample space of all such graphs on n vertices and m
edges, each taken as equiprobable. A random graph is a graph drawn from the sample
space G(n,m). Often we denote a randomly chosen graph in G(n,m) by Gn,. For a
property @ of graphs, we can ask for the probability that G, satisfies Q. More often,
we wish to know the limiting probability of Pr{Gm has Q} as n — oo and m = m(n)
depends on (and grows with) n. We say that almost every graph satisfies a property
Q if this limit is 1.

The primary tools we need from random graph theory can be found in [2]. (See
the following theorems.)

THEOREM 2. Let 0 < ¢ < 1 be a constant and m = |cn/2|. Almost every graph
Gr, is the union of tree and unicyclic components.

THEOREM 3. Let ¢ > 1 be a constant, m = |en/2] and w(n) — co. Almost every
G is the union of a “giant” component, tree components, and unicyclic components.
The number of vertices in unicyclic components is at most w(n). The number of
vertices in the giant component is within w(n)y/n of [1 — t(c)|n, where

kk-1

10 = 2322 (ot

k=1

THEOREM 4. Let ¢ # 1 be a positive constant, m = |en/2], and w(n) — oo, and
let w = w(Gm) denote the number of components in Gm. In almost every G we have
that w is within w(n)y/n of u(c)n, where

oo

_lz

k=1

ce—c)k .

o

The following lemma, which is from [6], enables us to compute capg (I'(G)).

LEMMA 5. Let G be a connected graph with n vertices and m edges, letI' = T'(G),
and let K denote the set of all inputs of T'. If G is a tree, then capg(T) =m=n—-1;
otherwise, capg (I') = n.

Since this lemma, is of central importance to our proof of Theorem 1 and is easy
to prove, we paraphrase Pippenger’s proof here.

Proof. We use induction on the number of vertices, n, in G. As the result is
trivial in case n = 0, we assume the result has been proved for all graphs with fewer
than n vertices. Let G be a graph with n vertices.

If G has a vertex v of degree 1, denote by e the edge incident with v. Let the
input corresponding to e be matched to the output corresponding to v. We complete
the matching by applying induction to G — v.

Otherwise, every vertex of G has degree at least 2. (Note that in this case G
cannot be a tree.) In this case the X-vertices of T'(G) each have degree 2 and the
Y-vertices of I'(G) each have degree at least 2. Thus for any subset S C Y we have

160 E. R. SCHEINERMAN

that the neighbors of vertices in S, denoted N(S) C X satisfies |[N(S)| > |S|. (This
holds because the number of edges emanating from S is at least 2|S| and the number of
edges entering |N(S)| from S is at most 2| N(S)|.) Hence by Hall’s marriage theorem,
there is a matching in I'(G) that saturates the Y-vertices. u]

If G is not connected, we perform the computation of Lemma 5 for each of its
connected components.

Proof of Theorem 1. Let ' = I'(K,). Let K denote a set of k inputs, randomly
chosen from the (IZ) possible k-element subsets of the inputs (where N = ('2‘)) Note
that the inputs in K exactly correspond to a random selection of k£ edges of the Ky,
giving us a random graph Gx. In applying the random graph theorems, we need to
select a function w of n as long as w(n) — oo. For example, take w(n) = log log log n.

In case ¢ < 1, then we know that the components of almost every Gy, are trees
and unicyclic graphs. By Lemma 5, it follows that capg (I') = k for such selections of
K. Any other selection of K (in which the corresponding Gy, has a different structure)
appears with vanishing probability. Thus ex(I') = [1 — o(1)]k ~ k.

In case ¢ > 1, then almost every Gj has the following structure: one large
component with [1 — t(c)]n + O(w(n)\/n) vertices, t(c)n + O(w(n)/n) vertices in

u(c)n + O(w(n)y/n) tree components and at most w(n) vertices in “small” unicyclic
components. We now apply Lemma 5 to compute capg (I') when Gy has this struc-
ture. The inputs corresponding to edges in the “giant” component produce (asymp-
totically) [1 — t(c)]n outputs, the inputs corresponding to the edges in the tree com-
ponents produce (asymptotically) [t(c) — u(c)|n outputs and the inputs correspond-
ing to the edges in the unicyclic components produce a mere w(n) outputs. Thus
capg (I') = [1—u(c)ln+O(w(n)y/n). All other Gi’s appear with vanishing probability
and thus ex(T) ~ [1 — u(c)]n.

Finally, we consider ¢ = 1. Note that u is a decreasing continuous function of
¢ and that u(1) = 1/2. Further, ex(I') is an increasing function of k. Thus for any
€ > 0 we can select a § > 0 so that if £k = [(1 —6)en/2] then ex(I') > (1 — €)n/2
and if £ = (1 + 8)cn/2] then ex(T") < (1 + €)n/2. Thus when ¢ = 1 we have ex(T) ~
In/2| = k. o

3. Random concentrators. We wish to construct a concentrator with m in-
puts, n outputs (m > n and n large) in which each input is connected to exactly two

outputs. In the previous section we considered the solution of [5] in which m = (}).

In [6] we have concentrators for m = 3n/2, where n is of the form (?}"), where ¢ > 5
is prime.

Here we consider concentrators designed at random. Specifically, given n and m
our concentrator will be I'(Gr,), where G, € G(n,m) is a random graph. Our first
observation is that the average expected capacity of a random concentrator equals the
expected capacity of I'(K,,).

PROPOSITION 6. For Gm € G(n,m) and 1 < k < m we have E {ex[['(Gm)]} =
ex[['(Kn)].

Proof. 1t is convenient to work in a slightly altered probability space for our
graphs. Let G’ = G’(n,m) denote the set of all graphs that have vertex set V =
{1,---,n} and have m edges that are labeled (without repetition) by the integers
1,--+,m. Since there are m! ways to edge label the same graph, we have

97| = 16" (n, m)| = ((};))m;

and each element of G’(n,m) is taken as equiprobable. Alternatively, we can think of a
graph in G’(n, m) as a graph in G(n, m) together with an ordering of its edges. Notice

CAPACITY OF BINOMIAL AND RANDOM CONCENTRATORS 161

that whether we work in G’(n,m) or in G(n, m) we compute the same expectation for
ex[[(Gm)]. Let Ko = {1,2,---,k} denote a fixed set of inputs. Thus,

(1) E {ex[T'(G — Y e[(G)]
g
1
2 I'(G)]
() ()'g C;[;Capl{[(
3) LS Y capg[N(G
)lg K deo
@ = 57 X e, (@)
Geg’
(5) = E{capg, [I'(G)]}
(6) = ex[['(Kn)]-
We have the equality (3) = (4) because the value of the sum
> cap[[(G

Geg'

does not depend on K. The equality (5) = (6) holds because whether we randomly
choose the inputs in I'(Ky) or fix the inputs and randomly choose the connections, we
compute the same quantity. O

We wish to assert that almost all graphs G € G(n,m) produce good concen-
trators ['(G). However, it is not enough to know that the mean expected capacity
is good, since the good results may only be achieved on relatively few graphs. To
show that almost every graph gives good concentrator behavior, we use the method
of martingales.

Let {Xo,X1, -+, Xm} be a sequence of random variables defined on a common
sample space. If X;—1 = E[X;|X;—-1] then the sequence is called a martingale. We use
the following inequality due to Azuma [1] (see also [4]).

THEOREM 7. Let {Xo, -+, Xm} be a martingale and suppose that there exist con-
stants c1, -+, cm such that | X; — Xi—1] < ci, then

—)2
We employ this inequality via the following definitions. For fixed k, define a
random variable X on G’(n,m) by X(G) = ex[l'(G)]. Next, for G € G'(n,m) denote
by €;(G) the set of the first j edges in G (recall that the edge sets of graphs in G’(n, m)
are ordered). Now we define our martingale {Xo, X1, -+, Xm} by

Xj(G) = E[X(H)le;(H) = (G)].

In other words, X;(G) is the average of X over all graphs H whose first j edges agree
with G. Thus Xo has constant value F(X) and X,, = X. Further, the martingale
condition, X;_1 = E[X;|X;—1], is satisfied. Finally, as we vary the connections of a
single input, j, we can change the expected capacity by at most 1, hence we have
|X; — Xj—1] < 1. Applying Azuma’s inequality we have

(7) Pr{|X - B(X)| > A} saexp{g%;}.

162 E. R. SCHEINERMAN

THEOREM 8. Let m = o(n2?/logn). Almost every graph G € G(n, m) is such that
for all k with 1 < k < m we have

k+ o(n) when k < n/2,
ex[['(G)] =4 [—u(e)ln+ o(n) when k = cn/2 for constant ¢ > 1,and
n+ o(n) when k/n — oo
where, as before,
1 > kk—2 k
= - —c)r .,
u(e) = :L:‘; o (eem)"

Proof. Suppose m = n?/(w(n)logn), where w(n) — co. We know from Propo-
sition 6 that for each k the mean expected capacity of I'(G) has the value asserted
in the theorem. For fixed k, with 1 < k& < m, the probability that G does not have
ex[['(G@)] within A = 2n/4/w(n) = o(n) of the mean can be estimated from inequality
(7) to be

Pr{|E(ex) — ex| 2 A} < 2exp {%} = 0(n-2).

The probability that G does not have ex[I'(G)] within A of the mean for arbitrary k
can therefore be bounded by mO(n—2) — 0 as n — co. u|

We can compare expected capacity of a randomly generated concentrator with the
concentrators proposed in [6]. These concentrators are referred to as modular (3:2)-
concentrators I'(G) whose underlying graph G is 3-regular and of high girth. Thus
the modular (3:2)-concentrators have m = 3n/2 inputs and n outputs. Pippenger [6]
defines G using an algebraic construction. He shows that ex (') for his concentrators
is given by

k + o(n) when k < 3n, and
ex(l') = n 3n)3 3 3
k—2(—-ﬁ) +o0(n) when yn <k < 5n=m.

Thus the expected performance e; of modular (3:2)-concentrators dominates that of
random concentrators, but not by a wide margin. Table 1 shows the expected capacity
ex of modular and random concentrators for large n and various input sizes.

4. Justification of expected capacity. It is conceivable that the expected
capacity of a concentrator can be high while the actual capacity of many inputs is
low. Were this the case, the expected capacity might not be a useful performance
measure for concentrators. Fortunately, we can apply the martingale method to show
that the expected capacity is nearly achieved by almost all sets of inputs.

For fixed k, we consider all possible sets of k inputs to I' as equiprobable. It
will be convenient to view the input set K as an ordered k-tuple without repetitions,
K = (i1,t2,- -+, k), each with probability (m — k)!/m!.

Let X denote the random variable defined on the sample space of all ordered
inputs by X(K) = capg (). Note that F(X) = ex(I'). We now define a martingale
by

X;i(K) = E [X(K")|iy = i1,ip = b9, -+, 8 = 1] .

In other words, X;(K) is the average capacity of those ordered inputs that agree with
K in the first j places. Note that Xy has constant value ex(I") and that Xz(K) =

CAPACITY OF BINOMIAL AND RANDOM CONCENTRATORS 163

X(K) = capg(I'). Note that the sequence {Xo,---, Xk} is a martingale. Moreover,
since changing a single input in K can change capg(I') by at most 1, we have | X; —
X;-1| £ 1. Thus by Azuma’s inequality (Theorem 7):

—)\2
Pr{lca‘pK(F) - 6k(F)| > /\} = PI'{IXk - X0| >)\} < 2exp{_2_k_}

which is negligible if A > V/k.
Thus high expected capacity translates into excellent performance for nearly all
input sets.

Acknowledgment. The author wishes to thank Professor Gerald Masson for
introducing him to this subject and for many interesting discussions.

REFERENCES

[1] K. AZUMA, Weighted sums of certain dependent random variables, Téhoku Math. J., 19 (1967),
pp. 357-367.

[2] B. BOLLOBAS, Random Graphs, Academic Press, New York, 1985.

[3] P. ERDOS AND A. RENYI, On random graphs I, Publ. Math. Debrecen 6 (1959), pp. 290-297.

[4] D. A. FREEDMAN, On tail probabilities for martingales, The Annals of Probability 3 (1975),
pp. 100-118.

[5] G. M. MASSON AND S. B. MORRIS, Ezpected capacity of (';’) -networks, IEEE Trans. on
Comput. C-32 (1983), pp. 649-657.

[6] N. PIPPENGER, Ezpected capacity of modular concentrators, preprint.

SIAM J. COMPUT. (© 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 164-181, February 1990 011

SPACE-EFFICIENT MESSAGE ROUTING IN ¢-DECOMPOSABLE
NETWORKS*

GREG N. FREDERICKSON' AND RAVI JANARDAN?

Abstract. The problem of routing messages along near-shortest paths in a distributed network
without using complete routing tables is considered. It is assumed that the nodes of the network can
be assigned suitable short names at the time the network is established. Two space-efficient near-
shortest path routing schemes are given for any class of networks whose members can be decomposed
recursively by a separator of size at most a constant ¢, where ¢ > 2. For an n-node network, the first
scheme uses a total of O(cn logn) items of routing information, each O(log n) bits long, and O(log n)-
bit names, generated from a separator-based decomposition of the network, to achieve routings that
are at most three times longer than shortest routings in worst case.! The second scheme augments
the node names with O(clog clogn) additional bits and uses this to reduce the bound on the routings
to (2/a) + 1, where a, 1 < a < 2, is the root of the equation al(¢*1)/21 — ¢ — 2 = 0. For both
schemes, the node names and the routing information can be determined efficiently.

Key words. distributed network, graph theory, k-outerplanar graph, routing, separator, series-
parallel graph, shortest paths

AMS (MOS) subject classifications. 68M10, 68Q20, 68R10, 94C15

1. Introduction. One of the primary functions in a distributed network is the
routing of messages between pairs of nodes. Assuming that a nonnegative cost, or
distance, is associated with each edge, it is desirable to route along shortest paths.
While this can be accomplished using a complete routing table at each of the n nodes
in the network, such tables are expensive for large networks, storing a total of @(n?)
items of routing information, where each item is a node name. Thus, recent research
has focused on identifying classes of network topologies for which the shortest paths
information at each node can be stored succinctly. It is assumed that the nodes can be
assigned suitable short names at the time the network is established. The idea behind
naming nodes is to encode useful information about the network in the node names
and use this to do the routing. Shortest path routing schemes that use O(logn)-
bit node names and a total of ©(n) items of routing information have been given for
networks such as trees, unit-cost rings [SK],[vLT1], unit-cost complete networks, unit-
cost grids [vLT2], and networks at the lower end of a hierarchy identified in [FJ1] (the
simplest of which are the outerplanar networks [H]). Unfortunately, the approach in
the above research becomes expensive even for very simply defined classes of networks
such as, for instance, the series-parallel networks [D]. However, by shifting our focus
to consider schemes that route along near-shortest paths, we have been able to design
space-efficient routing schemes for much broader classes of network topologies.

The issue of saving space in routing tables by settling for near-shortest path

* Received by the editors December 11, 1986; accepted for publication (in revised form) April
14, 1989. A preliminary version of the results in this paper appeared as a part of Separator-based
strategies for efficient message routing, Proc. 27th Annual IEEE Symposium on Foundations of
Computer Science, Toronto, Ontario, Canada, October 1986, pp. 428-437.

t Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907. The
research of this author was supported by National Science Foundation grant CCR-86202271 and by
Office of Naval Research contract N 00014-86-K-0689.

 Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.
The research of this author was supported by National Science Foundation grants DCR-8320124
and CCR-8808574; and by a grant-in-aid of research from the Graduate School of the University of
Minnesota.

! Unless stated otherwise, all logarithms are to the base 2.

164

SPACE-EFFICIENT MESSAGE ROUTING 165

routings was first raised in [KK]. (Indeed, this is the first reported work on the
problem of space-efficient routing.) Networks of general topology were studied in
[KK] and a clustering approach was proposed for naming the nodes. Unfortunately,
no indication was given of how to do the clustering. Further, the routings produced
depended crucially on certain strong assumptions about the structure of the clusters,
and, in worst case, could be O(n) times longer than shortest routings. In this paper,
and in a related paper [FJ2], we consider various classes of networks that exhibit a
certain separator property and we show how to take advantage of this property to
design space-efficient near-shortest routing schemes. All our schemes achieve routings
that are, in worst case, at most a small constant times longer than corresponding
shortest routings. More recently, general networks with unit cost edges have been
considered in [PU] and a trade-off has been established between the space used and
the quality of the routings generated. Both upper and lower bounds are given for this
trade-off.

In this paper, we present two near-shortest path routing schemes for any class
of c-decomposable networks, defined as follows. Let the network be represented by
an n-node undirected graph G = (V, E). Consider an assignment of nonnegative
weights to the nodes of G and let ¢ > 2 be a constant. A c-separator of G for this
weight assignment is a set C of at most ¢ separator nodes whose removal partitions the
remaining nodes into sets A and B, each containing at most two-thirds of the total
weight and with no node in A adjacent to a node in B. We call G a c-decomposable
graph if it has a c-separator for every assignment of weights to its nodes. Examples of
c-decomposable graphs are the series-parallel graphs [D], for which ¢ = 2, and the k-
outerplanar graphs [B] where k > 1 is a constant, for which ¢ = 2k. (The 1-outerplanar
networks, or, more simply, the outerplanar networks, are also c-decomposable, for
¢ = 2. However, we ignore them in this paper because an optimal routing scheme
for these has already been given in [FJ1].) As we shall see, the c-decomposability
of the network allows us to recursively apply a c-separator algorithm to perform a
hierarchical decomposition of the network and assign suitable names to the nodes.

We measure the quality of the routings achieved by our schemes on a network by
the performance bound, defined as the maximum ratio p(u,v)/p(u,v) taken over all
pairs of nodes u, v in the network, where p(u,v) is the length of a shortest path from
u to v and p(u,v) is the length of the routing from u to v. Our first scheme, called
the basic routing scheme, uses O(log n)-bit names and a total of O(cnlogn) items of
routing information (where each item is O(log n) bits long) to achieve a performance
bound of 3. The second scheme, called the enhanced routing scheme, incorporates
in the node names of the basic scheme O(clogclogn) additional bits of information
about relative distances and uses this to achieve a performance bound of (2/a) + 1,
where @, 1 < a < 2, is the root of the equation al(¢t1)/21 — o — 2 = 0. Thus, the
performance bound is 2 for ¢ < 3 and ranges up to strictly less than 3 as ¢ increases.

Our results also hold for classes of c-decomposable networks for which c is not a
constant, but instead depends on n. An example is the class of planar networks, for
which ¢ is O(y/n) [LT]. However, we will not consider such networks in this paper
for two reasons. First, the techniques of this paper are geared specifically towards c-
decomposable networks with constant ¢. When ¢ is not a constant, it may be possible
to do better by employing techniques different from those used in this paper, as is the
case for planar networks [FJ2]. Second, when ¢ is not a constant, node names in the
enhanced routing scheme are no longer O(logn) bits long. Although ¢ is a constant
throughout this paper, we will include it within O(-) bounds on space and time, in

166 GREG N. FREDERICKSON AND RAVI JANARDAN

order to make explicit the exact dependence of these resources on c.

In [FJ2] two routing schemes are given for planar networks. The first scheme uses
O(log n)-bit names and O(n*/3) items of routing information, each O(logn) bits long,
to achieve a performance bound of 3. For any constant ¢, 0 < ¢ < 1/3, the second
scheme can be set up to use O(n!*¢) items of routing information, each O((1/¢) logn)
bits long, and achieve a performance bound of 7, but at the expense of O((1/¢) log n)-
bit names. These schemes are also separator-based, the first using the separator
strategy of [LT] and the second the more structured cyclic separator of [M]. However,
owing to the comparatively larger size of the separator for planar networks, the tech-
niques used for decomposition, naming, and routing are quite different from those in
the current paper.

The rest of this paper is organized as follows. In the next section we describe
how the network is decomposed hierarchically and how the nodes are assigned names.
The basic scheme is given in §3 and the enhanced scheme in §4. Section 5 discusses
efficient separator strategies for two specific classes of c-decomposable graphs, namely,
series-parallel graphs and k-outerplanar graphs. Section 6 discusses how to set up the
routing schemes efficiently.

2. Hierarchical decomposition and naming. We show how to generate suit-
able names for the nodes of G in order to facilitate the routing. The separator property
is used to decompose G hierarchically into levels and to assign names to the nodes
based on their relative positions in the decomposition.

The graphs at various levels are generated inductively as follows. The graph at
level 0 is Go = G. Define the core of Gy to be Gy itself, and call each node in the
core a core node of Gy. For i > 0, let G, be a level ¢ graph, where w is a binary
string. If G, has more than ¢ core nodes, then a c-separator algorithm is applied
to G, after assigning equal positive weights to its core nodes and zero weights to
its remaining nodes. (As we show later, G, is c-decomposable, so that a c-separator
exists for the chosen weight assignment.) Let G/, and G,; be the subgraphs of G,
induced on the vertex sets A|JC and B|J C, respectively, where A, B, and C are as
in the c-separator definition given previously.

The separation of G,, into G, and G.,; may not preserve distances between core
nodes of G, that end up in G, (respectively, GL,,), since some of the shortest paths
between these nodes may use portions of G,; (respectively, G.,o). As we shall see,
these distances need to be preserved in order to achieve the claimed performance
bounds. This is accomplished by augmenting GL,, (respectively, G.,;) with a suitable
graph derived from G,; (respectively, GL,,), which represents the shortest paths lost
due to the separation. The size of the augmenting graph is kept small (O(c*) nodes and
edges) so that the routing schemes can be set up efficiently. We note that information
about the augmentation is not needed once the routing scheme has been set up, since
the routing itself takes place in the actual network G. We discuss the augmentation
in more detail later.

The augmentation of G.,, and G!,; yields the level i + 1 graphs G and G,
respectively. Define the core of G0 (respectively, G,1) as the subgraph of G, induced
on the core nodes of G, that are in A (respectively, B). Call each such node a core
node of G,o (respectively, G,1). Any other node of G, (respectively, Gy1) is a
noncore node.

Because of the way the nodes of G, are weighted, it follows from the definition
of a c-separator that the number of core nodes in each of G,¢ and G, is at most
two-thirds the number of core nodes in G,. Since G has n core nodes and since no

SPACE-EFFICIENT MESSAGE ROUTING 167

graph with ¢ or fewer core nodes is decomposed further, it follows that the number of
levels in the decomposition is O(logs,5(n/c)), which is O(logn).

The decomposition establishes certain natural relationships between the nodes,
as follows. If level ¢ graph G, is decomposed further, then each separator node of G,
that is also a core node of G, is a level i node in the decomposition. Otherwise, G,,
has at most ¢ core nodes, and each is a level i node. Any two level ¢ nodes that belong
to the core of the same level i graph G, are siblings. Suppose that G, is decomposed
further, into G0 and G,;. Let u be a separator node of G,,. If v is any core node
G0 or G,1, then u is an ancestor of v for level i. We further distinguish between
ancestors as follows. If u is also a core node of G, then u is a real ancestor of v for
level i. If u is a noncore node of G, then it is a pseudo-ancestor of v for level i. Note
that it is possible for a node to be a real ancestor of another node for some level j
and a pseudo-ancestor of that node for some other level j° > j. Two nodes are related
in the decomposition if they are siblings or if one is a real ancestor of the other for
some level; otherwise, they are unrelated.

Each level i node belonging to the core of G, is given the name w, along with
an integer distinguisher of value at most ¢, to make names distinct. Clearly, any
name is O(logn) bits long. This naming has the property that two nodes are related
if and only if the distinguisher-free portions of their names are identical or if one is
a proper prefix of the other. For unrelated nodes u and v, if | is the length of the
longest common prefix of the distinguisher-free portion of their names, then v and v
are in the core of the same level [— 1 graph, but are in the cores of different level [
graphs resulting from the decomposition of the level [— 1 graph. Level [is called the
separating level for u and v. As we shall see, the separating level plays a crucial role
in the routing strategy.

We illustrate the decomposition and naming in Fig. 1. The given graph Gy is
4-decomposable. For simplicity, let all edge costs be 1. The separator nodes of Gy,
which become the level 0 nodes in the decomposition, are shown filled in. Only one of
the two graphs resulting from the separation of Gy, namely, Gy, is shown, together
with the names assigned to the level 0 nodes. The symbol “#” is a delimiter and the
integer following it is the distinguisher. Any two of the named nodes are siblings and
each named node is a real ancestor for level 0 of an unnamed node. Graph Gy is also
shown, with the portion introduced by the augmentation shown dashed. The nodes
of Gy that are not filled in and that have solid edges incident with them are the core
nodes of Ggg; the remaining nodes of Gy are its noncore nodes. In order to illustrate
pseudo-ancestors, suppose that the node in the augmenting graph that is adjacent to
node 0#1 becomes a separator node of Ggg at the next level in the decomposition.
Let this node be u and let v be the degree 3 node adjacent to 0#1. Then u is a
pseudo-ancestor of v for level 1.

We now discuss how the augmentation is performed. Let G, and G.,; be the
graphs resulting from the separation of G,. G, is augmented as follows to obtain
Go. Let C be the set of separator nodes of G,. A graph that is the union of the
shortest path trees T, in G, from each node v in C to the nodes in C — {v} is
constructed. The induced subgraph of this graph restricted to G/, is inferred. To
keep its size small, this induced subgraph is then contracted by repeatedly replacing
each degree 2 node not in C and its incident edges by an edge of cost equal to the
sum of the costs of the two edges removed. Graph G, is the union of the contracted
graph and G.,. G, is similarly obtained from G/,;. Note that the nodes of C are
considered as part of the augmenting graph. Note also that the augmentation does

168 GREG N. FREDERICKSON AND RAVI JANARDAN

Go:
0#1
G'oo: 0#2
043
0744
Gool

FIG. 1. Illustration of the first level in the hierarchical decomposition and naming of a c-
decomposable graph, with ¢ = 4.

SPACE-EFFICIENT MESSAGE ROUTING 169

not create any new nodes.

In Fig. 1, the augmenting graph is a subgraph of G§,, with the exception that the
dashed edge incident with node 0#1 is the contraction of a path of two edges, each
of cost 1, and thus has cost 2.

The following lemmas establish certain important properties of the augmentation.

LEMMA 2.1. Let G, be any graph in the decomposition. The distance in G,
between any two core nodes u and v is equal to the distance between them in G.

Proof. The proof is by induction on the length r of w. The basis 7 = 1 is true
since G, = Gy = G. Consider r > 1, and suppose that the claim is true for any string
of length r — 1. Let G, be the graph that is decomposed to produce G, where ' is
a proper prefix of w and of length r — 1. Core nodes u and v of G, are core nodes of
G as well and, by the induction hypothesis, the distance in G+ between u and v is
equal to the distance between them in G.

Consider any shortest (u,v)-path P in G,s. If P exists in G, also, then the
lemma, follows. Suppose that P does not exist in G,. Then each segment of P that is
missing in G, is a shortest path in G, between a pair of separator nodes of G, and
was lost during the separation of G,/. Due to the augmentation, G,, contains a path
whose length equals the length of the missing segment. Thus, G,, contains a path of
the same length as P, and the lemma follows. 0O

LEMMA 2.2. Let the separation of G, yield graphs G,y and G.,,. The augmen-
tation of G' o (respectively, G' ;) introduces fewer than c* nodes and 3c*/2 edges into
Gl,o (respectively, G.,;).

Proof. We prove the claim for G.,,. Let Jo be the graph with which G, is
augmented to obtain G p. In worst case Jy is the contraction of the union of ¢
shortest path trees T,,. There are at most ¢(c — 1) shortest paths in these trees, and
for each path there is a corresponding contracted shortest path in Jy. If two shortest
paths in Jy meet, then they share a maximal subpath. We call the endpoints of this
subpath meeting nodes. In worst case there are c(c —1)(c(c—1) —1)/2 < c2(c—1)?/2
meetings between different pairs of shortest paths.

We derive an upper bound on the sum of the degrees of the nodes in Jy. Starting
with an empty graph, insert the shortest paths of Jy one at a time. Assign each node
a degree when it is introduced into the graph for the first time. Assign it degree 1
if it is in C, and degree 2 otherwise. Taken over all nodes in Jy, this contributes
2(| V(Jo) | —¢)+ ¢ =2 | V(Jy) | —c to the degree sum. If two shortest paths meet,
then increase the degree of each of their meeting nodes by 1. Thus the increase in the
degree sum due to all meetings between shortest paths is less than c¢(c — 1)2. Thus
the degree sum is less than 2 | V(Jp) | —c + c2(c — 1)2.

Now each node in V(Jy)—C has degree at least 3, so that the degree sum is at least
3(| V(Jo) | —¢) + ¢ =3 | V(Jo) | —2c. It follows that | V(Jo) | —c < c?(c — 1)2 < ¢*.

The number of edges in Jy is half the degree sum of Jy. Thus there are fewer
than | V(Jo) | —¢/2 + c?(c — 1)2/2 < 3c*/2 edges in Jo. O

LEMMA 2.3. FEvery graph G, in the decomposition is c-decomposable.

Proof. We will show how to find a c-separator of G, for any assignment of
nonnegative weights to its nodes. View the replacement of each vertex of degree 2 as
the contraction of one of its incident edges, followed by the deletion of the resulting
loop. The endpoints of the contracted edge can be viewed as identified together, and
the resulting vertex can be viewed as a set of vertices identified together. Thus each
vertex in G, can be viewed as a set of vertices originally in G that have been identified
together during the course of the graph decomposition. For each vertex w in G,

170 GREG N. FREDERICKSON AND RAVI JANARDAN

choose from its set of vertices a representative vertex and assign this representative a
weight (in G) equal to the weight of w in G,,. For each vertex in G that is not assigned
a weight, assign it the weight 0. Since G is c-decomposable, there is a separator C
of G, with vertex partition A, B for this assignment of weights. Let C,, be the set of
vertices in G, such that a vertex is in C,, if and only if some member of the vertex’s set
isin C. Let A,, B, be a partition of the remaining vertices of G, where a vertex is in
A, (respectively, B,,) if and only if the representative of its set is in A (respectively,
B).

We claim that C,, is a c-separator of G,,, with vertex partition A, B,, for the given
assignment of weights to G,,. Consider any path P in G between a vertex in A and a
vertex in B. Path P must contain some vertex v in C. The corresponding contracted
path P, (if it exists) in G, must contain a vertex in C,, whose representative in G is
v. Since every path in G, can be viewed as the contracted version of some path in
G, the sets A, and B, will be nonadjacent. Further, |C,| < |C’| < ¢ and the total
weight of A, (respectively, B,) is at most the total weight of A (respectively, B),
which is at most two-thirds the total weight of G,. Thus the claim is true. 0

LEMMA 2.4. Any path P in G between unrelated nodes u and v contains a real
ancestor of u and v for some level.

Proof. Let | be the separating level for u and v and let G, be the level [—1 graph
containing u and v as core nodes. If every node of P is a core node of G, then P
exists in Gy, also. Since [is the separating level for u and v, every (u,v)-path in G,
contains a separator node of G, i.e., an ancestor of u and v for level [— 1. Further,
the separator node on P is a core node of G, i.e., a real ancestor of u and v for
level I — 1. Thus the lemma is true.

If P does not consist entirely of the core nodes of G, then let y be the first
noncore node of G, encountered on P in going from u to v. Since y is a noncore node
of G, there is a smallest prefix w’ of w such that y is part of the augmentation of
G .. Further, y is a core node as well as a separator node of G, since it is the first
noncore node of G, on P. Thus, since u and v are both core nodes of G, it follows
that y is a real ancestor of u and v for level I’, where I is the level of G,:. Thus the
lemma is true. 0O

In particular, Lemma 2.4 implies that any shortest (u,v)-path in G between
unrelated nodes v and v contains a real ancestor of u and v for some level. We denote
by real_ancestor(u,v) the first such real ancestor encountered on the shortest path
in going from u to v. As we shall see in the next section, real_ancestor(u,v) plays a
crucial role in the routing.

3. Routing information and routing strategy in the basic scheme. Hav-
ing generated the decomposition and node names, we store appropriate routing infor-
mation at the nodes and use this to perform the routings. In order to motivate the
routing information stored, we first give an overview of the routing strategy.

The strategy for routing from a source s to a destination d depends on whether
or not s and d are related. Since it is not expensive to store shortest paths routing
information for routing between related nodes, if s and d are related a shortest routing
can be performed using this information. However, this approach is not feasible for
routing between unrelated nodes, as the amount of shortest paths routing information
needed is large. Instead, if s and d are unrelated, then the routing is done as two
shortest routings, each of which is between a pair of related nodes. Let a be a suitably
chosen ancestor of s and d for level I — 1, where [is the separating level for s and d.
The first routing is from s to a, and the second routing is from a to d. The length of

SPACE-EFFICIENT MESSAGE ROUTING 171

the overall routing from s to d is not necessarily shortest, but depends on the ancestor
chosen. In the basic routing scheme, where the ancestor for level [— 1 chosen is the
one closest to s in G, the routing is within a factor of 3 of optimal. In the enhanced
routing scheme described in the next section, we show how to reduce the length of
the routings by making a more careful choice of an ancestor.

There are two problems that can arise in the routing strategy described above.
The first problem is that the ancestor chosen may not be related to s and d. Thus,
shortest paths routing information will not be available to do the routings from s to
a and from a to d. The problem is overcome by making the name real_ancestor(s,a)
available to s, since a real ancestor of s and a is clearly a real ancestor of s and
d as well. The routing from s to d is done through real_ancestor(s,a). We call
real_ancestor(s,a) a surrogate.

The second problem has to do with routing between related nodes. As an example,
consider routing from s to d when they are related. Node s uses its shortest paths
information to determine the node w to which the message is to be sent. If w and
d are unrelated, then w will be unable to continue the routing to d. The problem is
overcome by having s supply the name real_ancestor(w, d) to w in the message header,
so that w can route the message through this node. We call real_ancestor(w,d) a
milestone in the routing. In addition, the problem can occur at other intermediate
nodes in the routing from s to d, as well as in each phase of the two-phase routing
employed when s and d are unrelated. However, each time a suitable milestone will
be available through which the routing can be done.

We are now ready to describe in more detail the routing information stored
in the basic scheme. Let v be any node. The information at v consists of four
tables: next_node,(-), milestone,(-), ancestor,(-), and surrogate,(-). The tables
next.node,(-) and milestone,(-) are used for routing to related nodes. For each re-
lated node u, the name of the next node on a shortest (v,u)-path in G is stored in
next_node,(u). If next_node,(u) and u are unrelated, the name real_ancestor(w,u)
is stored in milestone,(u), where w = next_node,(u). The tables ancestor,(-) and
surrogate,(-) contain additional information needed for routing to unrelated nodes.
Suppose that v is a level 7 node, ¢ > 1. For each j < i, the name of the ancestor of v
for level j that is closest to v in G is stored in ancestor, (7). If v and a = ancestor,(j)
are unrelated, then the name real_ancestor(v,a) is stored in surrogate,(a). For con-
venience, if v and a are related, then a itself is stored in surrogate,(a).

The following theorem bounds the amount of routing information stored in the
network.

THEOREM 3.1. For any n-node c-decomposable graph, the basic scheme stores
a total of O(cnlogn) items of routing information, where each item is O(logn) bits
long.

Proof. Each item of routing information is a node name, and hence is O(logn)
bits long. :

We first argue that the total amount of information held in next.node,(-) by all
nodes v is O(cnlogn). Any node v has O(clogn) real ancestors in the decomposition.
Thus v stores O(clogn) items of information for these ancestors, and these ancestors
together store O(clogn) items of information for v. Therefore, taken over all nodes
v, a total of O(cnlogn) items of such information are stored in the network. Further,
since each node has at most ¢ siblings, O(cn) items of sibling information are stored
in total. The total amount of information held in milestone, () by all nodes v is at
most that which is held in next_node,(-). Finally, each node v stores O(logn) items

172 GREG N. FREDERICKSON AND RAVI JANARDAN

of information in ancestor,(-) and surrogate,(-), for a total of O(nlogn). O

A complete description of the routing from s to d in the basic scheme is as
follows. The message header contains separate fields for the milestone and the des-
tination, both initially set to d. The milestone field alone is reset, as necessary,
during the routing. Let d’ denote the current name in the milestone field. Each node
v participating in the routing performs a routing action, as follows. It determines
w = next_node,(d'), resets d’ to milestone,(d’) if w and d' are unrelated, and then
sends the message to w over edge {v, w}.

At the start of the routing, node s compares the name s with d’, which is initially
d, to determine whether the two nodes are related or not. If they are related, then
s performs a routing action. Otherwise, let | be the separating level for s and d (I
can be determined from the names), and let a = ancestors(l —1). Then s resets d’' to
surrogates(a) and performs a routing action. Each intermediate node different from
the current d’ will find the latter in its routing table and thus can perform a routing
action. Eventually the message reaches the current d'. If d' is d, then the routing
terminates. Otherwise, d’ is reset to d and a routing action is performed.

Note that whenever the milestone field is reset at a node that is different from
s and the current milestone, it is reset to a real ancestor on a shortest path to the
current milestone. Thus it is enough to continue the routing with respect to the new
milestone, and the previous milestone need not be saved. (In fact, the message may
never even reach some of the milestones that were discarded. This is because the next
node information used to do a shortest routing from the current milestone to d might
correspond to a shortest path that is different from the shortest path containing some
of the discarded milestones.)

In order to establish the performance bound of the basic scheme, we first obtain
a lower bound on p(s,d) when s and d are unrelated.

LEMMA 3.2. Let s and d be unrelated nodes with separating level I and let a be
the ancestor of s for level | — 1 that is closest to s in G. Then p(s,d) > p(s,a).

Proof. We first show that there is a shortest (s,d)-path in G that contains an
ancestor of s for level [— 1. Let G, be the level [— 1 graph containing s and d as core
nodes and let P,, be a shortest (s, d)-path in G,,. By Lemma 2.1, P,, has length p(s, d).
Further, P, contains an ancestor b of s and d for level [— 1, since [is the separating
level for s and d. Let G’ be the subgraph of G obtained by uncontracting G, until
no longer possible. This is done by repeatedly taking any edge that represents the
contraction of a two-edge path during any augmentation done so far and replacing
the edge by the path. Each edge of the two-edge path has the cost it had prior to
its contraction. Let P’ be the path in G’ (and hence in G) that corresponds to the
uncontraction of P,. P’ has the same length as P, and contains b. Thus P’ is the
desired shortest (s, d)-path in G.

Thus, we have

p(s,d) p(s,b) + p(b, d)
> p(s,b)
> p(s,a),

since a is the closest ancestor of s for level { — 1. O
The following theorem establishes the performance bound of the basic scheme.
THEOREM 3.3. For any c-decomposable graph G, the basic scheme has a perfor-
mance bound of 3.
Proof. Let s be any source and d any destination. If s and d are related, then the

SPACE-EFFICIENT MESSAGE ROUTING 173

routing is along a shortest (s,d)-path in G. This is because every node participating
in the routing performs a routing action with respect to the milestone, which is always
on a shortest (s, d)-path. Otherwise, let [be the separating level for s and d and a
the ancestor of s for level | — 1 that is closest to it in G. Let o’ = surrogates(a)
and consider the first occasion in the routing that a milestone a” is reached, where
a" is possibly a’. Since a” is a real ancestor of s and d, and thus related to both, the
routings from s to @’ and from a” to d are both along shortest paths, by the above
reasoning. Thus

p(s,d) = p(s, a'll) + p(a", d)
p(s, a'”) + p(a”a a/) + p(ala d)
p(s,a’) + p(a’,d) (since a” is on a shortest (s,a’)-path)

IA

< p(s,a’) +p(a',a) + p(a,d)

= p(s,a)+ p(a,d) (since a’ is on a shortest (s, a)-path)
< p(s,a) + pla,s) + p(s,d)

< 3p(s,d) (by Lemma 3.2).

Thus 4(s, d)/p(s,d) < 3 for any nodes s and d, and the theorem follows. O

In fact, the performance bound of 3 is approachable and is thus the best possible
for this scheme. Let a* different from a be the ancestor on a shortest (s, d)-path and
suppose that a” = o’ = a. Let p(s,a) = p(s,d) — p(a*,d), and let p(a,d) = p(a,s) +
p(37d) = 2p(3a d) - p(a*7d)‘ Then ﬁ(sad)/p(sad) = (3p(37d) - 2p(a*vd))/p(s7d) ap-
proaches 3 as p(a*,d) becomes vanishingly small.

4. Improving the performance bound: The enhanced routing scheme.
The idea behind the enhanced scheme is to make a more careful choice of an ancestor
among the ancestors of s for level [— 1 when s and d are unrelated. Once a suitable
ancestor has been chosen, the routing strategy is as in the basic scheme, with the
chosen ancestor substituting for the closest ancestor. To help make the choice, some
additional information is stored at the nodes and distance information is encoded in
the node names, as follows.

Let v be a level ¢ node, 7 > 1. For each j < ¢, instead of storing at v only the
name of the closest ancestor of v for level j, we store the names of all ancestors u
of v for level j. If u and v are unrelated, we also store the name real_ancestor(v,u)
in surrogate,(u); otherwise we store u in surrogate,(u). This introduces a total of
O(cenlogn) additional items of routing information.

Node v’s name is augmented with information about the relative magnitudes
of its distances in G from its ancestors for level j. Two pieces of information are
encoded for each ancestor, with the information for different ancestors appearing in
the lexicographic order of the names assigned to them from the decomposition. The
first specifies its position in an ordering of the ancestors by nondecreasing distances
from v, with ties broken lexicographically. The second piece of information is as
follows. Let o > 1 be a function of ¢ to be specified later. For each ancestor a’
with index p’ in the above ordering by distances, let a” be the ancestor with the
smallest index p” > p/, such that p(v,a’) < (1/a)p(v,a”). Then, in addition, p” is
encoded in v’s name for a’. If a” does not exist, then zero is recorded for a’. All this
information can be encoded using at most 2clogc bits per level j. As there are at
most logz/; n = 1.71logn levels, the total number of additional bits encoded into v’s
name is 3.42clogclogn.

174 GREG N. FREDERICKSON AND RAVI JANARDAN

From the ancestors of s and d for level | — 1, where [is the separating level
for s and d, an appropriate ancestor is chosen by s as follows. Clearly, if there
are ancestors a’ and a” such that p(s,a’) < p(s,a”) and p(d,a’) < p(d,a”), then
a' can be eliminated. Using the information encoded in its name and that of d, s
determines a subset of the ancestors in which no ancestor eliminates another. (These
ancestors will be known in terms of their positions in the above lexicographic ordering.
However, s can determine their names, since the names of its ancestors at each level

are available.) Let ay,ag, -, ap be the h < ¢ such ancestors, indexed in increasing
order of their distances from s. Denote p(s,a;) by z; and p(d,a;) by y;, 1 < i < h.
Thus z; < 29 < --- < zp. Furthermore, since no ancestor eliminates another, we

have y; >y > -+ > yp.

Let m be an integer parameter, 1 < m < h, to be specified later. If there exists a
minimum index 3, 1 < i < m, such that z; < (1/a)z;+1, then s chooses a;. Otherwise,
if there exists a maximum index ¢, m < i < h, such that y; < (1/a)y;—1, then s chooses
a;. Otherwise, s chooses a,,. As demonstrated in the proof of the following theorem,
the appropriate choice for m is [(h +1)/2].

THEOREM 4.1. For any c-decomposable graph G, the enhanced routing scheme
has a performance bound of (2/a)+1, where @, 1 < a < 2, is the root of the equation
allet)/2] _ o _ 9 — 0.

Proof. Let s be any source and d any destination. From the proof of Theorem 3.3,
we know that the length of the generated routing is at most the sum of the distances
in G from s and d to the chosen ancestor. It follows that if there is a shortest (s, d)-
path through this ancestor, then the routing is optimal. Thus assume that there is
no shortest (s, d)-path through the chosen ancestor, and that there is one through ag,
1<aq<h

Case 1. a;, 1 <1i < m, is chosen in the scan over the z’s.

(a) Suppose that ¢ < g. Then since 2,41 < x4 and z; < (1/a)z;t1, we have
z; < (1/a)zq. Thus,

ﬁ(sa d)/p(sy d) < (xi + yi)/(xq + yq)
< 2mi+wg+yg)/(wg+yg) (since y; <z + 14+ yg)
< (2zg/a)/(zq+yq) +1
< (2/a)+1.

(b) Suppose that ¢ > ¢. Since z; > (1/a)zj4+1,1 < j < 4, it can be shown
inductively that z; < a*~%z,. Thus,
p(s,d)/p(s,d) < (@i +yi)/(zq +yq)

(@92 +yq)/(zq +yq) (from above, and since y, > y;)
ai™9

ININ A

a™ 2,

Case 2. a;, m < i < h, is chosen in the scan over the y’s.

(a) If i > g, then, in a fashion similar to that in Case 1(a), it can be shown that
p(s,d)/p(s,d) < (2/a) + 1. |

(b) Suppose that ¢ < g. Then y; < a9 'y, holds. In a fashion similar to that in
Case 1(b), it can be shown that p(s,d)/p(s,d) < ah~™~1.

Case 3. a,, is chosen by default.

(a) If m > g, then we have z,, < a™ %z, and, as in Case 1(b), it can be shown
that p(s,d)/p(s,d) < a™ 1.

SPACE-EFFICIENT MESSAGE ROUTING 175

FIG. 2. Ezample of a routing choice in the improved scheme for a c-decomposable network,
with ¢ = 5.

(b) If m < g, then we have y,, < a9y, and, as in Case 1(b), it can be shown
that p(s,d)/p(s,d) < o™,
From the above it follows that

p(s,d)/p(s,d) < max {(2/a) +1,a™ !, ah"™}.

For m = [(h+1)/2] we have o™~ ! < o™ < al(¢=1)/21, The larger of (2/a)+1 and
al(e=1)/21 js minimized when a is chosen as the positive root of (2/a)+1 = al(c=1/21,
ie., alct)/21 — o — 2 = 0. Thus p(s,d)/p(s,d) < (2/a) + 1 for any nodes s and d,
and the theorem follows. 0

For small values of ¢ the above theorem yields performance bounds that are
appreciably better than 3. For instance, if ¢ is 2 or 3, then the performance bound is at
most 2; if ¢ is 4 or 5, then the performance bound is at most 2.32. These performance
bounds are approachable. Let a; be the ancestor chosen by s and suppose that there
is a shortest (s,d)-path through az. Let z; = (1/a)z2 and y; = 71 + T2 + y2. Then
p(s,d)/p(s,d) approaches (2/a) + 1 as y becomes vanishingly small.

Figure 2 illustrates schematically the enhanced routing algorithm for a 5-decom-
posable graph. There are just four ancestors a;, az, a3, and a4 to choose from, since
the unnamed ancestor is eliminated by as. For this example, a = 1.52, m = 2,
and the shortest (s,d)-path is through as. In the routing algorithm, the scan over
the z’s is inconclusive. The scan over the y’s first succeeds at ysz, since y3 = 6 and
(1/a)ys = 6.6. Thus ag is chosen, yielding a routing that is 21/14 = 1.5 times longer
than optimal.

5. c-Separator strategies for graph decomposition. In this section, and in
§6, we address the problem of efficiently setting up the routing schemes described. A

176 GREG N. FREDERICKSON AND RAVI JANARDAN

crucial step in setting up the schemes is finding a c-separator efliciently. In this section,
we give O(n)-time c-separator algorithms for two specific classes of c-decomposable
graphs, namely, the series-parallel graphs (¢ = 2) and the k-outerplanar graphs for
k > 1 a constant (¢ = 2k).

5.1. Finding a 2-separator for series-parallel graphs. Two edges in a graph
are series if they are the only edges incident with a node, and parallel if they join the
same pair of nodes. A series-parallel graph is recursively defined as follows [D]. An
edge is a series-parallel graph. The graph obtained by replacing any edge in a series-
parallel graph either by two series edges or by two parallel edges is series-parallel.
A two-terminal series-parallel graph is a graph with two distinguished nodes called
terminals and is defined recursively as follows. Any edge is a two-terminal series-
parallel graph, the terminals being its endpoints. If H; and H, are two-terminal
series-parallel graphs, then so is the graph H obtained either by identifying one of
the terminals of H; with one of the terminals of Hy or by identifying them in pairs.
In the former case the terminals of H are the unidentified terminals of H; and Ho,
while in the latter they are the identified terminals. Any simple n-node series-parallel
graph has O(n) edges.

With every two-terminal series-parallel graph G, one can associate a binary struc-
ture tree [VTL]. Each leaf of the tree represents an edge of G. If v is an internal node
of the tree with children v; and v, representing the two-terminal series-parallel graphs
H, and H,, then v represents the two-terminal series-parallel graph H obtained as
above from H; and Hs. The root of the tree represents G. Since every series-parallel
graph is two-terminal series-parallel for an appropriate choice of terminals [D], a
structure tree can be associated with it.

For convenience, we assume that the given series-parallel graph G is biconnected.
This condition can be enforced, if necessary, by introducing an edge between the
terminals of G. The cost of the edge is chosen to be greater than the sum of all the
edge costs, so that shortest paths are unaffected.

Given any assignment of nonnegative weights to the nodes of G, a 2-separator
can be found as follows. Construct a structure tree for G with root r, as described in
[VTL]. For each node z in the tree, let W(z) be the sum of the weights of the nodes
in the series-parallel graph represented by z. For each nonleaf node, let the heavy
child be the one with the larger W(-), ties broken arbitrarily.

Initially, set = to r. While x is not a leaf of the structure tree and W (z) exceeds
two-thirds the total weight assigned to the nodes of G, reset x to its heavy child.
When this step terminates, let C be the set of terminals of the series-parallel graph
represented by z. Let A consist of the remaining nodes of this graph and let B be
V(G) — (AU). It can be verified easily that A, B, and C satisfy the conditions for
a 2-separator.

THEOREM 5.1. A 2-separator of an n-node series-parallel graph can be found in
O(n) time.

Proof. Consider the algorithm described above for finding a 2-separator of a
series-parallel graph. The structure tree can be constructed in O(n) time [VTL]. The
time to compute W (-) and search the tree is clearly O(n). O

5.2. Finding a 2k-separator for k-outerplanar graphs. The k-outerplanar
graphs are defined as follows [B]. Consider a plane embedding of a planar graph.
The nodes on the exterior face are layer 1 nodes. For ¢ > 1, the layer i nodes are
those that lie on the exterior face of the embedding resulting from the deletion of all
layer j nodes, j < i. A plane embedding is k-outerplane if it contains no node with

SPACE-EFFICIENT MESSAGE ROUTING 177

layer number exceeding k. A planar graph is k-outerplanar if it has a k-outerplane
embedding. Any n-node k-outerplanar graph has O(n) edges.

Let G be a k-outerplanar graph. We assume that a k-outerplane embedding G*
of G is available. G* may be represented using the data structure of [LT], where
each node has available a list of its neighbors in clockwise order around the node in
the embedding. Given any assignment of nonnegative weights to the nodes of G, a
2k-separator can be found as follows. The interior faces of G* are first triangulated.
Each interior face whose boundary consists of nodes all with the same layer number
is triangulated arbitrarily. Each interior face whose boundary consists of both layer 4
and layer ¢+1 nodes, 1 < ¢ < k, is triangulated by repeatedly adding an edge joining a
layer ¢+ 1 node to a layer ¢ node. The resulting embedding, G4, is also k-outerplane,
with each layer ¢ + 1 node adjacent to at least one layer ¢ node. The desired separator
is found in G4

We assume that G7 is biconnected. Otherwise, we enforce this condition as
follows. Each articulation point a of G, will be on the exterior face. Introduce an
edge joining two neighbors of a that are on the exterior face and are consecutive in
the clockwise ordering of the neighbors of a. The number of such edges introduced
will be O(n), and the cost of each is chosen sufficiently large so that shortest paths
are unaffected.

The separator algorithm is as follows. At all times, the algorithm maintains a
path P of length at most 2k in G, which disconnects G into two regions. The
algorithm repeatedly modifies P until the total weight of the nodes in each region is
at most two-thirds the total weight assigned to the nodes of G. Initially, P consists
of a single edge joining a pair of level 1 nodes. In general, P has layer 1 nodes as
endpoints, and from one end of P to the other, the layer numbers of its nodes first
increase monotonically and then decrease monotonically, possibly with a single pair
of consecutive nodes of the same layer number.

For each region bounded by P, determine the sum of the weights of the nodes
contained in the region. Let the heavy region be the one with the larger total weight,
ties broken arbitrarily. If the heavy region has weight exceeding two-thirds the total
weight assigned to the nodes of G, then modify P as follows.

Let v be a node on P of highest layer number and u the neighbor of v on P with
the higher layer number, ties broken arbitrarily. Let P; and P, be the subpaths of P
on either side of edge {v,u}, where v is an endpoint of P; and u an endpoint of P,.
Consider the face in the heavy region whose boundary contains edge {v,u} and let w
be the third node on this face. For some i, 1 < ¢ < k, the layer numbers of v, u, and
w must each be either 7 or i + 1. There are two cases of interest.

If the layer number of w exceeds the layer number of at least one of v and u,
then reset P to the path consisting of Py, {v,w}, {w,u}, and P,. If the heavy region
now has total weight exceeding two-thirds the total weight assigned to the nodes of
G, then modify P recursively.

Otherwise, let P be a path in the heavy region from w to the exterior face such
that the layer numbers of its nodes decrease monotonically. Such a path can be found
because each layer 7 + 1 node is adjacent to at least one layer 7 node, 1 < 7 < k.
Furthermore, P3 can always be picked so that it is either node-disjoint from both P;
and P, or it meets one of these paths at a node and contains the segment of this
path from the meeting point to the exterior face. Determine the total weight of the
nodes contained in the region R; bounded by Pi, {v,w}, and P3. Do the same for the
region Ry bounded by P, {u, w}, and P;. Without loss of generality assume that Ry

178 GREG N. FREDERICKSON AND RAVI JANARDAN

is the heavy region. If P3 and P; share no nodes, then reset P to the path consisting
of P, {v,w}, and P;. Otherwise, let z be the first node common to P; and P3 and
let e be an edge incident on z from the cycle consisting of the (z,v)-subpath of P,
the edge {v,w}, and the (w, z)-subpath of P;. Reset P to the path consisting of P;,
{v,w}, and Ps, with e deleted. If the heavy region now has total weight exceeding
two-thirds the total weight assigned to the nodes of G, then modify P recursively.

Eventually a path P is found such that the heavy region has total weight at most
two-thirds the total weight assigned to the nodes of G. It can be shown inductively
that P is a disconnecting path for G , hence for G*, and has at most 2k nodes. Let
C be the set of nodes on P, A be the set of the nodes in the heavy region, and B
be V(G) — (A|JC). It may be verified that A, B, and C satisfy the conditions for a
2k-separator.

THEOREM 5.2. A 2k-separator of an n-node k-outerplanar graph can be found in
O(n) time.

Proof. Consider the algorithm described above for finding a 2k-separator of a
k-outerplanar graph. Given the embedding G* using the data structure of [LT], the
layer numbers can be computed in O(n) time [B]. The triangulation can also be done
in O(n) time. The time to successively modify paths is as follows. Consider any path
P in the algorithm. The node v of highest layer number is identified at the time P is
formed. The nodes u and w can be identified in constant time.

If the layer number of w exceeds the layer number of at least one of v and u, then
P can then be modified and the weight of the heavy region determined in constant
time. The node of highest layer number on the resulting path is w. Charge this cost
to edge {v, w}, which is eliminated from the heavy region. Thus the total time for all
paths modified in this fashion is O(n).

Otherwise, we find P and determine as follows which of R; and R, is the heavy
region. Accumulate the weight of the two regions by alternately examining one node
from each region, stopping when one of the regions has been exhausted. To do this
efficiently, perform a depth-first search in each region in incremental fashion, i.e.,
search in one region until a node has been added to the depth-first search tree, and
then suspend the search in this region and resume it in the other region. Since the
graph is planar, the time for this is proportional to the size of the exhausted region.
Since the weight of the exhausted region is known, the weight of the other region can
be computed, and the heavy region determined. P is then reset appropriately. The
node of highest layer number on the resulting path is one of v, u, and w.

The time to thus modify P is proportional to the size of the exhausted region.
Charge this cost to the nodes in the region that is not the heavy region. This results
in constant charge per node. Since each of these nodes is charged at most once and
then eliminated, the total time for all paths modified this way is O(n). 0O

6. Computing the node names and routing information. In this section
we discuss how to generate the node names and determine the routing information
stored at each node. Our time bounds hold for any uniformly sparse and contractible
class of c-decomposable graphs such that any n-node graph from the class has an O(n)-
time c-separator algorithm. We call a class of graphs uniformly sparse and contractible
if, for any graph in the class, the number of edges in any subgraph is linear in the
number of nodes, and any contraction of the subgraph is also in the class. Examples
of uniformly sparse and contractible classes of c-decomposable graphs are the series-
parallel graphs and the k-outerplanar graphs, for £ > 1 a constant. Linear-time
c-separator algorithms for these classes have been given in the previous section.

SPACE-EFFICIENT MESSAGE ROUTING 179

The following theorem establishes the time needed to set up our routing schemes.

THEOREM 6.1. Let G be any n-node graph drawn from a uniformly sparse and
contractible class of c-decomposable graphs such that any n-node graph from the class
has an O(n)-time c-separator algorithm. The basic and enhanced routing schemes can
be implemented in G in O(cn(logn)? + cinlogn) time. If G is also planar, then the
time is O(cn(logn)3/? + c*nlogn + c*n(logn)'/?). For series-parallel graphs G, the
setup time is O(nlogn).

Proof. Let NC(n) be the total number of noncore nodes that are generated when
graph G with n (core) nodes is decomposed down to graphs with at most ¢ core nodes,
where we include in NC(n) each occurrence of a node as a noncore node. We establish
an upper bound on NC(n), which will be useful later. We have,

NC(n) = 0 forn<ec
NC(n) < NC(an)+ NC((1 —a)n) +2¢* forn>c,

where 1/3 < a < 2/3. The last line above follows from the fact that the two graphs
resulting from the separation of G have at most an and (1 — a)n core nodes, respec-
tively, for some a, 1/3 < a < 2/3. By Lemma 2.2, the augmentation introduces fewer
than c* noncore nodes into each of these graphs, which contributes a total of at most
2¢* to NC(n).

An induction on n shows that NC(n) < max{0,2c3n — 2¢*} for all n > 0. Thus
NC(n) is O(c3n).

We first analyze the setup time for the basic scheme. The time for doing the
decomposition and naming is as follows. Let G, be any level ¢ graph in the decom-
position, ¢ > 0. Let G, have [, core nodes and m, noncore nodes, for a total of n,,
nodes. Note that G, will be in the same class as G. The time to separate G, if nec-
essary, is O(n,). The time to augment the two graphs resulting from the separation
of G, is dominated by the cost of computing at most ¢ shortest path trees, one rooted
at each separator node of G,. This takes time O(cn, logn,), which is O(cn,, logn),
using the algorithm from [J]. The other operations, including the contraction, take
O(n,) time. The time to name the level 7 nodes from the core of G,, is O(c). Thus
the time to handle G, is O(cn,, logn), which is O(c(l,, + m,,) logn). The total time is
obtained by summing over all level ¢ graphs and then summing over all levels i. Thus
the total time is O(3_ .11 jevels i 2oall level i graphs G, ¢(lw + M) logn), which is

O(Eall levels i(cn lOg n+c log n Eall level i graphs G, mw))
This follows, since the cores of the different level ¢ graphs are disjoint, so that

. 2 all level i graphs G, ly is O(n).
Since

Zall levels i zall level ¢ graphs G, my, is NC(n),

and since there are O(logn) levels, the total time is O(cn(logn)? + c*nlogn).

Next, routing information is set up at the nodes. Let v be a level ¢ node from the
core of level ¢ graph G,,. The next_node,(:) information is determined as follows. A
shortest path tree rooted at v is constructed in G,,. Let u be any node in the core of
G, and let y be the the child of v on the path from v to u in the tree. If the edge
{v,y} belongs to G, then next_node,(u) is set equal to y. If {v,y} does not belong
to G, then it must be the result of contracting a maximal path in G, with interior
nodes of degree two, during some augmentation. In this case, next_node,(u) is set
equal to the name of the neighbor of v on this path. This neighbor information can
be maintained easily during the augmentations. Furthermore, whenever v is included

180 GREG N. FREDERICKSON AND RAVI JANARDAN

in the shortest path tree rooted at a real ancestor w of v for some level less than ¢,
next_node,(w) is set equal to the name of the parent of v in the tree, with contracted
edges handled as before. During this computation, p(v, w) is also determined for later
use.

The time to construct the shortest path tree for v is O(n, logn,). Thus the
time to construct the shortest path trees for all level ¢ nodes from the core of G, is
O(eny, logny,), which is O(en,, logn). The total time is obtained by summing over all
level ¢ graphs and then summing over all levels i. By a previous argument, this is
O(cn(logn)? + cinlogn).

The closest ancestors are determined next. Let j = 0,1,2,--- in turn and for each
jleti=354+1,5+42,--- in turn. For each level ¢ node v, the closest ancestor for each
level j is determined as follows. Let a be any ancestor of v for level j. If v and a are
related, then p(v,a) is known from the next_node,(a) computation done previously.
If v and a are unrelated, then p(v,a) can be computed by minimizing p(v,a’)+p(a’,a)
over all ancestors a’ of v and a for level 5/ — 1, where j' < j is the separating level for
v and a. Since j' — 1 < j, the distances p(v,a’) and p(a’,a) = p(a,a’) will have been
computed already. If a is found to be the closest ancestor of v for level j, then the
name @ is stored in ancestor,(j).

The above process also yields real_ancestor(v,a) when v and a are unrelated. Let
a’ be the ancestor of v and a for level j/ — 1 that minimizes p(v,a’) + p(a’,a). If @/
is a real ancestor of v and a for some level, then real_ancestor(v,a) is a’. Otherwise,
real_ancestor(v, a) is just real_ancestor(v,a’), and the latter will already be available,
since j' — 1 < j. Thus, corresponding to &, the name real_ancestor(v,a) is stored in
surrogate,(a) if a is a pseudo-ancestor of v for level j. Otherwise, @ itself is stored
in surrogate,(a).

The time to compute p(v, a) for unrelated nodes v and a is O(c). Thus the time for
all such nodes a among the ancestors of v for level j is O(c?). Once the distances from
v to all its ancestors for level j are known, the closest ancestor and the corresponding
surrogate can be found in O(c) time. Thus the time for closest ancestor and surrogate
computations for all levels at v is O(c?logn), hence O(c?nlogn) at all nodes.

The milestone information can be set up as follows. Let v be any level ¢ node from
the core of level ¢ graph G,. Let u be a core node of G, and thus related to v, and
suppose that w = next_node,(u) and u are unrelated. Let j be the separating level
for w and u, and y the ancestor of u and w for level j that minimizes p(w,y) + p(y, u).
Then milestone,(u) is just real_ancestor(w,y), which, by the previous discussion,
will be known already. If next_node,(v) and v are unrelated, then milestone, (v) can
be set up simultaneously at w.

The time to set up milestone,(u) is O(c) for each node w in the core of G, and
hence O(cl,) for all u in the core of G,,. Since there are O(c) level i nodes from the
core of G, the milestones at all these nodes can be set up in O(c?l,) time. The total
time to set up milestone information at all level 7 nodes in the decomposition, which
is obtained by summing over all level i graphs G, is O(c?n). Thus the total time,
obtained by summing over all levels i, is O(c?nlogn).

It follows that the total setup time for the basic scheme is O(cn(log n)?+c*nlogn).
For planar graphs, the faster algorithm from [F] may be used in lieu of the algorithm
from [J] for determining shortest paths. This leads to a setup time of O(cn(log n)3/%+
c?nlogn + c*n(logn)'/?). For series-parallel graphs, a setup time of O(nlogn) can
be achieved, using a result from [HT] which allows single-source shortest paths to be
computed in O(n) time.

SPACE-EFFICIENT MESSAGE ROUTING 181

The analysis for the enhanced scheme is as follows. The time for doing the decom-
position and naming, and for setting up shortest paths information, milestones, and
surrogates, is as before. The time to encode the additional information into the name
of a level i node v is as follows. A lexicographic ordering of all the nodes, based on the
names assigned from the decomposition, can be generated in O(nlogn) time using a
radix sort. A lexicographic ordering of the ancestors of v for any level j < i, which
number at most ¢, can be inferred from the full lexicographic ordering in O(cloge)
time, by sorting the positions of these ancestors in the full ordering. Since the dis-
tances from v to the ancestors are known, the distance ordering can be generated
and the corresponding position information encoded into v’s name in O(clogc) time.
Furthermore, given «, the information about the relative magnitudes of distances can
be determined in O(c) time, by scanning in increasing order the distances of v from its
ancestors for level j. This information can then be encoded in v’s name in O(clogc)
time. Thus, the time per level for v is O(clogc), hence O(clogclogn) for all levels.
Taken over all nodes, this is O((clogc)nlogn).

Thus the overall setup time for the enhanced scheme is O(cn(logn)? + cinlogn).
It is O(cn(log n)3/2 + c2nlog n+ cin(log n)1/2) for planar networks, and O(n logn) for
series-parallel networks. O

7. Acknowledgments. We would like to thank the referees for numerous sug-
gestions that helped improve the paper.

REFERENCES

[B] B. S. BAKER, Approzimation algorithms for NP-complete problems on planar graphs, in
Proc. 24th Annual IEEE Symposium on Foundations of Computer Science, Tucson,
AZ, October 1983, pp. 265-273.

D] R. J. DUFFIN, Topology of series-parallel networks, J. Math. Appl., 10 (1965), pp. 303-318.

[F] G. N. FREDERICKSON, Fast algorithms for shortest paths in planar graphs, with applica-
tions, SIAM J. Comput., 16 (1987), pp. 1004-1022.

[FJ1) G. N. FREDERICKSON AND R. JANARDAN, Designing networks with compact routing
tables, Algorithmica, 3 (1988), pp. 171-190.

[FJ2) , Efficient message routing in planar networks, SIAM J. Comput., 18 (1989), pp. 843-
857.
[H] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[HT) R. HASSIN AND A. TAMIR, Efficient algorithms for optimization and selection on series-
parallel graphs, SIAM J. Algebraic Discrete Methods, 7 (1986), pp. 379-389.

J] D. B. JOHNSON, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Com-
put. Mach., 24 (1977), pp. 1-13.

[KK] L. KLEINROCK AND F. KAMOUN, Hierarchical routing for large networks — performance
evaluation and optimization, Comput. Networks, ISDN Systems, 1 (1977), pp. 155-174.

[LT) R. J. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J. Appl.
Math., 36 (1979), pp. 177-189.

M] G. MILLER, Finding small simple cycle separators for 2-connected planar graphs, J. Com-
put. System Sci., 32 (1986), pp. 265-279.

[PU] D. PELEG AND E. UPFAL, A trade-off between space and efficiency for routing tables, J.
Assoc. Comput. Mach., 36 (1989), pp. 510-530.

[SK] N. SANTORO AND R. KHATIB, Labelling and implicit routing in networks, Comput. J., 28
(1985), pp- 5-8.

[VTL] J.VALDES, R.E. TARJAN, AND E. L. LAWLER, The recognition of series-parallel digraphs,
SIAM J. Comput., 11 (1982), pp. 298-313.

[VLT1] J. VAN LEEUWEN AND R. B. TAN, Computer networks with compact routing tables, in
The Book of L, G. Rozenberg and A. Salomaa, eds., Springer-Verlag, Berlin, New York,
1986, pp. 259-273.

[VLT?2] , Interval routing, Comput. J., 30 (1987), pp. 298-307.

SIAM J. COMPUT. (© 1990 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 182-204, February 1990 012

FEASIBLE REAL FUNCTIONS AND ARITHMETIC CIRCUITS*
H. JAMES HOOVER}

Abstract. The connection between computable analysis and computational complexity is in-
vestigated by asking what it means to feasibly compute a real function. A new class of arithmetic
circuits, called feasible-size-magnitude, is introduced and used to show a feasible version of the
Weierstrass approximation theorem. That is, a real function is feasible if and only if it can be sup-
approximated by a division-free uniform family of feasible-size-magnitude arithmetic circuits over R.
This result involves a counter-intuitive simulation of Boolean circuits by arithmetic ones. It also has
implications for algebraic complexity theory.

Key words. feasible analysis, arithmetic circuit complexity, computable analysis

AMS(MOS) subject classifications. 68Q05, 26C99, 41A10, 41A20

0. Introduction. Suppose that z is a real number, and that f is a continuous
function over the real interval (—oo,+o00). What does it mean to compute z, to
compute f(z) for any z, and to do so efficiently or feasibly?

The computability aspect of this question originates with Turing [Tu36],[Tu37],
with further work by Grzegorczyk [Gr57] and Shepherdson [Sh76] among many others.
The notions of feasible real number and feasible real function are more recent, being
established by Ko and Friedman in [KF82]. They define a real number z to be feasible
if an approximation to of error < 2~™ can be computed in time n®(). Similarly, a
real function f is feasible over the fixed interval [0, 1] if an approximation to f(z) of
error < 2™ can be computed in time n®() relative to the cost of computing approx-
imations to z. In other words, a real function is a reduction of each approximation
of f(x) to a set of oracle calls delivering approximations to the input . Thus, real
numbers are computed by Turing machines, while functions are computed by oracle
Turing machines.

From a classical real analysis perspective, it is sufficient to study only the functions
defined on the interval [0,1]. However this is not the case if one adds complexity
considerations. In [Ho87] we began a systematic study of analysis in the more general
case, beginning with real numbers, progressing to functions, and then considering
operators. This paper contains some of the results of this program:

e First we extend the notion of feasible function to the interval (—oo,+00) by
making the complexity of the function f depend on both the desired accuracy of
approximation and the length of the interval over which it is computed. The structure
of the oracle machine computation in the case of continuous functions is such that,
although one can make many oracle calls, only two are actually needed. This allows us
to give equivalent definitions of feasible real functions in terms of the simpler Boolean
circuit model without oracles.

e Both the oracle machine and Boolean circuit models are unstructured in the
sense that they are permitted to inspect the bits of their inputs and to modify their
behaviour accordingly. This is not quite how mathematicians compute functions. Ap-
proximation theorists use more structured ways—such as power series, polynomials,

* Received by the editors September 8, 1988; accepted for publication (in revised form) May 9,
1989. This research was supported by the Natural Sciences and Engineering Research Council of
Canada grant OGP 38937.

t Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1
(hoover@cs.ualberta.ca).

182

FEASIBLE REAL FUNCTIONS AND ARITHMETIC CIRCUITS 183

and rational functions—which are essentially oblivious to the actual values of their
inputs. We show that there is common ground between these two approaches.

e To capture the notion of structured computations, we introduce a new class of
arithmetic circuits, called feasible-size-magnitude, which are of polynomial size and in
which internal gate values have only polynomial length magnitudes. This new model
is more like what an approximation theorist would consider a legitimate computation.

e Although one might think that the unstructured model is more powerful than
the structured one, our main result is that they are equivalent. That is, a real function
f is feasible on an oracle Turing machine if and only if it can be approximated by a
uniform family of feasible-size-magnitude arithmetic circuits. In fact, the approximat-
ing family is inverse-free and thus simply computes a polynomial—a kind of feasible
Weierstrass approximation theorem.

e An interesting consequence of the preceding result is that an analogue of
Strassen’s [Str73] division removal result also holds for feasible-size-magnitude arith-
metic circuits. Specifically, any feasible-size-magnitude circuit family can be approx-
imated by an inverse-free feasible-size-magnitude circuit family. This is despite the
fact that such circuit families can have exponential degree and do not necessarily
compute polynomials—two conditions under which Strassen’s technique fails.

e Although these results are in the domain of real analysis, they have algebraic
applications. We show that given a feasible-size-magnitude circuit family computing
a polynomial, it is in general impossible to produce a feasible-size-magnitude circuit
family that computes the indefinite integral of that polynomial unless P = # P. This
partly addresses an open problem posed by Kaltofen in [Ka87].

e We also extend these notions to feasible space and give corresponding results
for oracle machine space versus arithmetic circuit depth.

We assume that the reader is familiar with the usual basic material of compu-
tational complexity, Turing machines, uniform Boolean and arithmetic circuits, and
real analysis.

1. Feasible reals. Since most real numbers cannot be represented as finite strings
of digits, any notion of computing a real number must involve approximation.

DEFINITION 1.1. Let z be a real number. The notation (z),, for n > 0, stands
for any rational number such that |z — (z),| < 27™. We say that (z), is an nth
approzimation to x, and that a sequence {(z),} of such approximations represents x.

Often, one wishes to perform arithmetic on approximations. For example, suppose
one wants an nth approximation to x + y. What approximations to z and y are
sufficient? Equivalently, suppose one has a representation of x and y, what is a
representation of x + y?

PROPOSITION 1.2. Let z and y be real numbers represented by {(z)n}, {(y)n}-
Also suppose that L > 0 and M > 0 are integers such that 271 < |z| < oM ond
ly| < 2M. Then:

1. £+y can be represented by the sequence with terms (T +y)yn = (T)n+1+ (Y)n+1-

2. zy can be represented by (xy)n = (T)n+M+2{(Y)n+M+2.

3. 71 can be represented by (z71)n = (z)7 151

The natural notion of feasibility for real numbers is that computing an n-bit
approximation to & should only require time n©(%),

DEFINITION 1.3. A real number z is a feasible real if there is a Turing machine
that, on input of a natural number 7, outputs (z), in time nPW),

The results that follow depend in a detailed way on how we encode rational
numbers and sequences of approximations. To simplify the exposition we will restrict

184 H. JAMES HOOVER

our rationals to those that can be encoded in fixed-point binary notation, and restrict
our representations so that every nth approximation to x has exactly n bits to the
right of the binary point. This does not affect the class of reals and real functions
that we wish to compute—although this requires some proof. (See [Ho87].)

DEFINITION 1.4. Let [be a natural number, s an integer, and bg, - --,b; € {0,1}.
Consider the rational z where z = (2by — 1)2* Zizl 27%b;. We say that [s,1, b, -, bi]
is a range s length | fized-point binary encoding of z. Note that by plays the role of a
sign bit.

DEFINITION 1.5. Let s be a fixed integer, and z a real in [—2°,2°]. We say that a
sequence of approximations {(z),} is a range s fized-point representation of x if every
(z)r is encoded as a range s length [fixed-point binary encoding with | = s + n.

Thus we compute a real x by computing a sequence {(z),} of approximations,
each term having essentially one more bit of precision than the preceding one.

2. Feasible real functions. The original work of Ko and Friedman [KF82] de-
fines the class of feasible real functions in terms of oracle Turing machines.

DEFINITION 2.1. An oracle machine M on sequence w is a multitape Turing
machine with input and output tapes and with two other distinguished tapes. One
tape, called the oracle index tape, is write only. The other, called the oracle result
tape, is read only. When a natural number n is written on the oracle index tape the
string (w), may be read from the oracle result tape. Such an operation is termed an
oracle call. The time complexity of M is the usual one for Turing machines, with the
cost of each oracle call being the length of n and (w)p.

Oracle machines are the most powerful of all the reasonable deterministic models
for computing real functions. In the most general case, to compute an approxima-
tion (f(z))n we let the machine make any number of oracle